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Spatial Transcriptome-Wide Profiling of Small Cell Lung
Cancer Reveals Intra-Tumoral Molecular and Subtype
Heterogeneity

Zicheng Zhang, Xujie Sun, Yutao Liu,* Yibo Zhang, Zijian Yang, Jiyan Dong, Nan Wang,
Jianming Ying, Meng Zhou,* and Lin Yang*

Small cell lung cancer (SCLC) is a highly aggressive malignancy characterized
by rapid growth and early metastasis and is susceptible to treatment
resistance and recurrence. Understanding the intra-tumoral spatial
heterogeneity in SCLC is crucial for improving patient outcomes and clinically
relevant subtyping. In this study, a spatial whole transcriptome-wide analysis
of 25 SCLC patients at sub-histological resolution using GeoMx Digital Spatial
Profiling technology is performed. This analysis deciphered intra-tumoral
multi-regional heterogeneity, characterized by distinct molecular profiles,
biological functions, immune features, and molecular subtypes within
spatially localized histological regions. Connections between different
transcript-defined intra-tumoral phenotypes and their impact on patient
survival and therapeutic response are also established. Finally, a gene
signature, termed ITHtyper, based on the prevalence of intra-tumoral
heterogeneity levels, which enables patient risk stratification from bulk
RNA-seq profiles is identified. The prognostic value of ITHtyper is rigorously
validated in independent multicenter patient cohorts. This study introduces a
preliminary tumor-centric, regionally targeted spatial transcriptome resource
that sheds light on previously unexplored intra-tumoral spatial heterogeneity
in SCLC. These findings hold promise to improve tumor reclassification and
facilitate the development of personalized treatments for SCLC patients.

1. Introduction

Small cell lung cancer (SCLC) is a highly aggressive and deadly
malignancy with dismal survival outcomes. The five-year overall
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survival rate is less than 7% for most
patients.[1] Despite recent advances in
treatment, including combinations of im-
munotherapy and chemotherapy, there
has been limited improvement in survival
outcomes over the past decades.[2] Patients
initially respond to these treatments, but
quickly develop resistance, leading to rapid
disease progression and poor prognosis.[3]

A primary challenge in current clinical
practice for SCLC is the “one fits for all”
strategy, which fails to account for inter- and
intra-tumoral heterogeneity (ITH), which
can significantly influence patient out-
comes, response to treatment, and resis-
tance development.[4] Although previous
studies have investigated inter-tumoral het-
erogeneity in SCLC, and defined four ma-
jor molecular subtypes using conventional
bulk RNA sequencing,[5] recent advances
in single-cell RNA sequencing (scRNA-seq)
and spatial transcriptomics (ST) have al-
lowed a deeper exploration of intra-tumoral
heterogeneity (ITH).[6] In SCLC, scRNA-
seq has begun to reveal ITH-related molec-
ular profiles within individual tumors,

shedding light on the complex cellular ecosystem and het-
erogeneous characteristics driven by the tumor microenviron-
ment (TME).[7] However, scRNA-seq primarily provides compo-
sitional insights into the TME but lacks the structural context
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of this environment.[7a] Understanding intra-tumoral spatial het-
erogeneity in SCLC is critical to improve patient outcomes and
clinically relevant subtyping. A deeper understanding of the com-
plex ecosystem of the tumor microenvironment would shed light
on the underlying ITH characteristics in SCLC. However, cur-
rent research on ITH is mainly based on mouse models, cir-
culating tumor cells (CTCs), or samples from chemotherapy-
resistant patients with advanced disease using bulk transcrip-
tomics or single-cell RNA sequencing (scRNA-seq) approaches,
without taking into account the histological composition of the
TME.[7b,8] A critical knowledge gap remains regarding the extent
of heterogeneity potentially elucidated through in-depth molecu-
lar profiling at the histopathological level in primary SCLC spec-
imens.

From a clinicopathological perspective, we speculate that the
histological structure of sub-regional ecosystems is closely re-
lated to the biological behavior of tumors. To fill this gap, dig-
ital spatial profiling (DSP) has emerged as a powerful tool for
addressing biological mechanisms in a spatially resolved man-
ner in many cancers. In this study, we perform a comprehensive
whole transcriptome atlas of 79 spatially defined regions from 25
SCLC patients at the sub-histological level using the DSP technol-
ogy. Our study has generated a preliminary tumor-centric spatial
transcriptional profile that unravels previously unexplored intra-
tumoral spatial heterogeneity in SCLC. This study provides novel
molecular insights that may be valuable in developing novel clas-
sifications of SCLC and designing effective clinical regimes to
improve patient outcomes.

2. Results

2.1. Digital Spatial Transcriptome Profiling in SCLC

To comprehensively explore intra-tumoral heterogeneity at the
spatial transcriptome-wide scale in SCLC, we used DSP technol-
ogy with a panel covering over 18,000 protein-coding transcripts
(Whole Transcriptome Atlas, WTA) in situ. We delineated tumor-
immune compartments using fluorescence-conjugated antibod-
ies (PanCK and CD45) (Figure 1A). A total of 79 tumor-specific
regions of interest (ROIs) were collected from 25 SCLC patients.
Due to our stringent selection criteria, the number of ROIs per
patient varied from 2 to 9, with a median of 3, based on patho-
logical observation of paired H&E slides on each TMA core
(Figure 1B; Figures S1 and S2, Supporting Information).

The spatial physical distance (SPD) between any two ROIs
within a single tumor varied from 257 to 3,168 μm, with a me-
dian of 1, 843 μm (Figure 1C). High-throughput sequencing of
gene barcodes from ROIs resulted in a median of 6,280,000
aligned reads per ROI, with an interquartile range of 4,080,000
to 10,320,000. Analysis of the density distribution of normalized
gene expression across individual ROIs showed decent homo-
geneity, with no significant bias related to patient, sex, or tu-
mor location, ensuring the reliability and robustness of the data
(Figure S3, Supporting Information). We included 18,676 genes
from the WTA panel in all subsequent analyses to increase the
likelihood of including all genes potentially associated with ITH.
The distributions of average gene expression in log-transformed
format for each ROI ranged from 2 to 4.755, generating a normal-
like pattern (Figure 1D).

2.2. Spatial Analysis Reveals Intra-Tumoral Transcriptomic
Heterogeneity

To investigate intra-tumoral transcriptional diversity in a spatial
context, the t-SNE algorithm was used to project gene expression
profiles of 79 ROIs onto a 2D space for visualization (Figure
2A). The top 200 variable genes were extracted from the top
eigenvectors obtained through dimension reduction (Table
S1, Supporting Information), and unsupervised hierarchical
clustering was performed based on these genes across the 79
ROIs, generating three distinct clusters (C1-C3) to represent
unique transcript-defined phenotypes (Figure 2B). We then
quantified the ITH of these tumor ROIs based on gene ex-
pression profile using the DEPTH method, and observed a
higher level of ITH of the C1 cluster compared to the other two
groups (C2 and C3). Here, we denoted it as high-ITH (h-ITH).
In contrast, the C3 and C2 clusters demonstrated relatively
lower levels of ITH, which we termed low-ITH (l-ITH) and
medium-ITH (m-ITH), respectively (Figure 2B,C; Table S2,
Supporting Information). Meanwhile, there was no statistically
significant difference in SPD among the three ITH phenotype
groups (Kruskal–Wallis, p = 0.83), and no significant correlation
was observed between SPD and C-score (Spearman R = −0.041,
p = 0.65) (Figure S4A; Tables S3 and S4, Supporting Informa-
tion). Further examination of the pathological characteristics
within these ITH-defined groups revealed the distinct distribu-
tion of tumor-stroma patterns and variations in the morphology
of cancer cells. The h-ITH tumors showed high purity with spo-
radic stromal cells and infiltrating lymphocytes and the cancer
cells exhibited a more typical bare nucleus morphology with lim-
ited cytoplasmic content (Figure 2D). In contrast, the m-ITH and
l-ITH groups showed increased fibrotic stroma and more pro-
nounced infiltration of lymphocytes within the tumor bed, while
cancer cells showed enlarged nuclei and increased cytoplasmic
content (Figure 2D). These results indicate the existence of spa-
tially defined intra-tumoral heterogeneity at the molecular level,
which is potentially associated with the pathological features of
SCLC.

To further explore the underlying mechanisms driving these
distinct phenotypes, we performed differential gene expression
analysis pairwise between groups (h-ITH vs others, m-ITH vs
others, and l-ITH vs others) to identify gene signatures associ-
ated with the ITH phenotype. We identified 109 DEGs (80 up-
regulated and 29 down-regulated), 157 DEGs (55 up-regulated
and 102 down-regulated), and 68 DEGs (40 up-regulated and
28 down-regulated) for the high-ITH, m-ITH, and l-ITH phe-
notypes, respectively (Figure 2E). Using co-expression network
analysis based on these DEG sets, we constructed critical biolog-
ical networks for each ITH subtype (Figure 2F; Figure S4B, Sup-
porting Information), generating key regulatory genes connected
by multiple edges (326 edges connecting 101 genes) (Figure 2F).
Within these, the h-ITH phenotype was associated with pathways
such as epithelial-mesenchymal transition (EMT), angiogenesis,
and sensitivity to DNA damage response, whereas the m-ITH and
l-ITH groups were mainly enriched in WNT and beta-catenin sig-
naling, and estrogen response (Figure 2F). GO enrichment anal-
ysis revealed that the h-ITH phenotype was associated with cell
fate and differentiation, the m-ITH phenotype was enriched in
immune-related biological processes, and the l-ITH phenotype
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Figure 1. Transcriptome-wide spatial profiling of SCLCs. A) Schematic of the study workflow. The whole process includes TMA construction, fluores-
cence antibody incubation, probe hybridization, ROI selection and segmentation, barcode sequencing, DSP data processing and analysis. B) Schematic
representation of 79 ROIs from 25 SCLC patients. C) Histogram showing the distribution of pairwise spatial physical distance (SPD) between ROIs.
Distance was used with μm. D) Histogram of the number of ROIs with the average expression presented in log format. The average expression was
transformed with log2(x + 1). DSP, digital spatial profiling; TMA, tissue microarray; ROIs, regions of interest.
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showed enrichment in cellular response and organ formation
(Figure 2G).

2.3. Distinct Immune Characteristics of ITH Subtypes in the
Tumor Microenvironment

Given the distinct molecular features observed in ITH subtypes,
particularly regarding immune-related profiles, we focused on
characterizing the spatial composition of immune cells. We con-
ducted the deconvolution analysis from gene expression data us-
ing the CIBERSORT algorithm to quantify infiltrating immune
cells at the ROI level. Among the 22 cell types quantified, four im-
mune cell populations (CD8+ T cells, plasma B cells, CD4+ naive
T-cells, and resting myeloid dendritic cells) varied between ITH
groups (Figure 3A; Figure S5, Supporting Information). CD8+
T cells were significantly more abundant in ROIs with the m-
ITH phenotype compared to the other two phenotypes (p < 0.05,
Figure 3B). This observation was further confirmed by two oth-
ers widely used methods, TIMER and MCP-counter (p < 0.05,
Figure 3C). These computationally inferred findings were sub-
sequently validated using conventional immunohistochemistry
(IHC) targeting the T cell surface antigen CD8, where we ob-
served a higher infiltration of CD8+ T-cells in the ROIs of the m-
ITH phenotype compared to the other ITH phenotypes (Kruskal–
Wallis, p = 0.008) (Figure 3D).

Since T-cells mainly function via MHC-I molecules in a dy-
namic interplay with various co-regulatory cells such as dendritic
cells and B cells,[9] we further investigated genes involved in
antigen-presenting and surface immunoregulatory checkpoints.
By averaging the expression of these genes within each ITH
group, we observed distinct expression patterns associated with
each ITH group. The h-ITH or l-ITH phenotypes showed lower
expression of MHC I-related antigen presenting molecules com-
pared to the m-ITH phenotype (p < 0.05, Figure 3E). Similarly,
when comparing co-stimulatory and co-inhibitory molecules be-
tween ITH phenotypes, the m-ITH phenotype showed higher ex-
pression of co-stimulatory and immune checkpoint molecules
than the other ITH phenotypes (p < 0.05, Figure 3E). These
results indicated a sub-histologically defined microenvironment
arising from the tumor compartment with distinct ITH charac-
teristics, potentially explained by dynamically altered molecular
pathways with increased local immunogenicity involving CD8 T-
cell activation in the m-ITH group.

2.4. Spatial Intra-Tumoral Heterogeneity Associated with Survival
and Therapeutic Outcomes

To gain a deeper understanding of intra-tumoral heterogeneity
at the patient’s level, we aggregated the pre-determined ITH

subtypes (low, medium, or high ITH) of individual ROIs for
all patients. After mapping these ROIs back to the patients, we
categorized 25 SCLC patients into two distinct TME groups:
high-complex sub-TME (HCs-TME) and low-complex sub-TME
(LCs-TME) (Figure 4A). By quantifying the similarity of tran-
scriptional features between any two ROIs within a given tumor
using the C-score, we observed a significantly higher level of
transcript-defined intra-tumoral concordance in LCs-TME tu-
mors compared to HCs-TME tumors (Kruskal–Wallis, p < 0.001)
(Figure 4B). Moreover, these two patient groups showed signifi-
cant differences in survival outcomes and therapeutic responses.
LCs-TME tumors demonstrated significantly better overall
survival (OS) (log-rank test, p = 0.046) and disease-free survival
(DFS) (log-rank test, p= 0.024; Figure 4C) compared to HCs-TME
tumors. Notably, LCs-TME tumors showed no death or tumor re-
currence, highlighting the clinical value of this ITH classification
(Figure 4C), whereas examining the clinicopathologic charac-
teristics of the two sub-TME phenotypes only provided limited
value for patient stratification (Figure S6, Supporting Informa-
tion). These findings suggest that spatial intra-tumoral TME
heterogeneity in SCLC influences patient outcomes and pro-
vides a quantitative estimate for improved patient stratification
in SCLC.

2.5. ITH Reveals Intra-Tumoral Molecular Subtype Heterogeneity

To explore the correlation between tumor spatial heterogene-
ity patterns and the previously established molecular subtypes
(SCLC-A, SCLC-N, SCLC-P, and SCLC-Y) of SCLC defined by
RNA-seq, we extracted the spatial expression of four key tran-
scription regulators (ASCL1, NEUROD1, YAP1 and POU2F3) as
previously described by Rudin et al.[10] to assess SCLC molecu-
lar subtypes across 79 ROIs in 25 patients. Our analysis revealed
that SCLC-A was the most common subtype (n = 39, 49.4%), fol-
lowed by SCLC-N (n = 25, 31.6%) and SCLC-P (n = 15, 19.0%)
(Figure 5A). We observed a high concordance at the patient level,
with 59.5% of tumor ROIs from the same patient belonging to the
same molecular subtype. However, nine patients had mixed ROI
molecular subtypes that could not be assigned to a single molecu-
lar subtype (Figure 5B). A similar analysis was performed for neu-
roendocrine (NE) subtyping based on the 50 NE-related genes, as
previously described by Zhang et al.[11] Consistent with the above
subtype-defined proportions, based on the NE scores calculated
on each ROI, 23 ROIs were classified as low NE subtype (29.1%),
and 56 ROIs were classified as high NE subtype (70.9%), con-
firming the above findings (Figure 5C). When comparing the NE
subtyping of ROIs at the patient level, we observed that the classi-
fication of the ROI-based NE subtyping matched the patient-level

Figure 2. Distinct expression patterns associated with intra-tumoral ROIs identified by DSP. A) 2D t-SNE plot of all ROIs based on t-SNE using the DSP
transcriptomic profile. B) Heatmap showing the hierarchical clustering of 75 ROIs distributed across three distinct clusters based on the top 200 HVGs.
C) Box plots showing the ITH scores among three ROI clusters. C1 is the high-ITH phenotype (referred to as h-ITH), C2 is the medium-ITH phenotype
(referred to as m-ITH), and C3 is the low-ITH phenotype (referred to as l-ITH). p values were calculated with the Wilcoxon test (two clusters) and the
Kruskal–Wallis test (three clusters); ns p > 0.05; *p < 0.05; **p < 0.01, ***p < 0.001. D) H&E staining of the SCLC tumor tissue with ROI information. Red
represents the h-ITH ROIs; yellow represents the m-ITH ROIs; blue represents the l-ITH ROIs. E) Volcano plot showing differentially expressed genes
among different ITH phenotypes (h-ITH vs m-ITH/ l-ITH; m-ITH vs h-ITH/ l-ITH and l-ITH vs h-ITH/ m-ITH). The specific expressed genes (FC > 1.5,
p ≤ 0.05) of each phenotype were highlighted with corresponding ITH phenotype color. F) Gene-gene co-expression network with color-annotated ITH
phenotype. G) Network plot showing the enriched biological process in h-ITH phenotype, m-ITH phenotype, and l-ITH phenotype by ClueGO. DSP,
digital spatial profiling; HVGs, highly variable genes; ITH, intra-tumoral heterogeneity; PCA, principal component analysis; ROIs, regions of interest.
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Figure 3. Characterization of immune features in the intra-tumoral spatially sub-tumor microenvironments. A) Bar plot showing the relative infiltration
abundance of 22 immune cells estimated via spatial RNA expression using the CIBERSORT algorithm. B,C) Box plots showing infiltration abundance of
CD8+ T cells among h-ITH, m-ITH, and l-ITH phenotypes estimated by CIBERSORT, TIMER, and MCPCOUNTER algorithms. p values were calculated
with the Wilcoxon test (two clusters) and the Kruskal-Wallis test (three clusters); ns p > 0.05; *p < 0.05; **p < 0.01, ***p < 0.001. D) IHC staining images
of CD8 for h-ITH, m-ITH, and l-ITH phenotypes. Bar plots showing the difference of CD8 H-score among h-ITH, m-ITH and l-ITH phenotypes. Error
bars represent mean ± SEM. p values were calculated with the Wilcoxon test (two clusters) and the Kruskal–Wallis test (three clusters); ns p > 0.05;
*p < 0.05; **p < 0.01, ***p < 0.001. E) Heatmap showing expression levels of co-stimulatory and co-inhibitory molecules among h-ITH, m-ITH, and l-ITH
phenotypes. p values were calculated by the Wilcoxon test (two clusters) and the Kruskal-Wallis test (three clusters); ns p > 0.05; *p < 0.05; **p < 0.01,
***p < 0.001.

assignment in 19 cases, but discordance occurred in six cases
(Figure 5D).

Further analysis examined the concordance and discordance
between intra-tumoral sub-TME heterogeneity-defined SCLC
subtypes and these two patient-level molecular subtypes. No sig-
nificant differences were found in the distribution of molec-
ular subtypes (transcriptional subtypes and NE subtypes) be-
tween high TME heterogeneity (HCs-TME) and low TME hetero-
geneity (LCs-TME) patient groups (Fisher’s exact test, p > 0.05;
Figure 5E,F), suggesting that tumor-derived heterogeneity esti-
mation may be independent of previous transcriptional and NE-
based subtyping. Furthermore, compared to patients with a sin-
gle transcriptional subtype (5-year survival rate: 66.7% for SCLC-
A and 75% for SCLC-N), patients with an intra-patient mixture of
different transcriptional subtypes had a worse DFS rate (5-year

survival rate: 37.5%). In contrast, patients with an intra-patient
mixture of different NE molecular subtypes or NElow showed a
better DFS rate (5-year survival rate: 83.3%) compared to patients
with pure NEhigh (5-year survival rate: 75% for NElow and 42.9%
for NEhigh) (Figure 5G). These results suggest that classical SCLC
molecular subtypes may not be sufficiently predictive of clinical
outcomes, and instead, examining intra-patient molecular sub-
type diversity in a spatial context may provide more clinically rel-
evance for patient stratification.

2.6. A Spatially Identified ITH-related Molecular Signature for
Prognostic Stratification

To investigate the potential of ITH region-specific gene ex-
pression to infer tumor-originating TME phenotypes, we used a
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Figure 4. Spatial intra-tumoral heterogeneity is associated with patient’s survival and therapeutic outcome. A) The percentage of ROI ITH phenotypes
at the SCLC patient’s level. B) Bar plot showing the distribution of C-score among different patient groups. p values were calculated with the Wilcoxon
test (two clusters) and the Kruskal-Wallis test (three clusters); ns p > 0.05; *p < 0.05; **p < 0.01, ***p < 0.001. C) Kaplan–Meier analysis of OS and DFS
between patients with HCs-TME and LCs-TME. P values were calculated with the log-rank test. Stacked bar plots showing the distribution of OS and DFS
status on HCs-TME and LCs-TME in SCLC patients. p values were calculated using Fisher’s exact test. DFS, disease-free survival; OS, overall survival.

deep-autoencoder framework to select features based on the DSP
data that could effectively discriminate HCs-TME from LCs-
TME. Ten genes (NKX1-2, TLE2, TPBG, GPR31, SRSF6, DAZ4,
PD-L1, LYZ, PCP4 and ZIC1) were identified based on their
significance values, and then used to develop a machine-learning
model (named ITHtyper) based on the XGBoost algorithm for
sub-TME heterogeneity subtyping (Figure 6A). The ITHtyper
was trained on 70% of the patients and evaluated on the re-
maining 30% for internal validation. The ITHtyper effectively
dichotomized SCLC ROIs into high ITHtyper (ITHtyperhi) and
low ITHtyper (ITHtyperlo) phenotypes using a threshold of 0.45,
corresponding to HCs-TME and LCs-TME, respectively. Survival
analyses on both the training and testing sets demonstrated that
the ITHtyperlo phenotype was associated with improved OS and

DFS (log-rank test, p = 0.035 and 0.027 for OS, and p = 0.018
and 0.052 for DFS, respectively) (Figure 6B,C). Notably, the
ITHtyperlo phenotype showed no death or tumor recurrence
(Figure 6D,E). To further validate the applicability of ITHtyper in
bulk RNA-seq profiles, we applied it to 121 bulk tissue RNA-seq
profiles from multicenter SCLC patient cohorts. The results
showed that patients (n = 38) with the ITHtyperlo phenotype
had significantly better survival outcomes compared to those
(n = 83) with the ITHtyperhi phenotype (log-rank test, p = 0.032;
Figure 6F), highlighting its predictive potential for prognostic
stratification. Additionally, when applied to immunother-
apy cohorts, the ITHtyper showed superior predictive power
for immunotherapy response (AUC = 0.846) compared to PD1
(AUC = 0.769) and PD-L1 (AUC = 0.808) (Figure 6G). Notably, all
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Figure 5. Association of spatial intra-tumoral heterogeneity with conventional molecular classification in SCLC. A) Heatmap showing the dominant
transcriptional subtype of ROIs. B) Bar plot showing the percentage of transcriptional subtypes in ROIs at the SCLC patient level. C) Bar plots showing
the distribution of NE subtype of ROIs. D) Bar plot showing the percentage of ROI NE subtype at SCLC patient level. E) Sankey diagram showing
the association of the sub-TME heterogeneous phenotypes with transcriptional or NE subtypes. F) Pie plots showing the distribution of conventional
molecular subtypes in HCs-TME and LCs-TME. p values were calculated using Fisher’s exact test. G) Kaplan–Meier analysis of disease-free survival
among different patient groups. p values were calculated with the log-rank test.

patients who achieved complete response to immunotherapy be-
longed to the ITHtyperlo phenotype group, implying its broader
potential as a biomarker for predicting ICI response (Figure 6H).

3. Discussion

SCLC has historically been considered a homogeneous malig-
nancy, genetically characterized by universal loss of the TP53
and RB1 genes.[12] However, recent technological advances have
uncovered a previously unrecognized complexity and trans-
formed our understanding of the intra-tumoral heterogeneity of
SCLC.[13] Accumulating evidence from both molecular and clin-
ical studies has led us to recognize SCLC as a diverse entity, en-
compassing a spectrum of molecular subtypes within individual
tumors and even between different tumors.[7a,b,8d,13b,14] Elucidat-
ing the inherent heterogeneity is critical to understand the mech-
anistic drivers of its aggressiveness and to facilitate the devel-

opment of novel therapeutic strategies. Currently, most studies
of ITH in SCLC have relied on mouse models, circulating tu-
mor cells (CTCs), or samples from chemotherapy-resistant pa-
tients with advanced disease, using either bulk transcriptomics
or single-cell approaches.[7a,b,14c] However, a critical knowledge
gap remains regarding the extent of heterogeneity revealed by
in-depth molecular profiling at the spatial level, particularly in
treatment-naïve SCLC patients in a clinical setting.

Recent advances in spatial transcriptomics, such as 10xVisium
or Stereo-seq, have enabled high-resolution mapping of gene ex-
pression in intact cell and tissue samples.[15] In this study, we
aimed to address tumor-enriched spatial transcriptomic profiles
rather than a complete spatial architecture. From a clinicopatho-
logical perspective, we hypothesize that the histological structure
of subregional ecosystems is intricately linked to the biological
behavior of tumors. To investigate this, we conducted a com-
parative study using different subregions of clinically archived
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Figure 6. Deep learning identified spatially resolved gene signatures. A) Workflow for the computational strategy used to identify gene signature in
distinguishing HCs-TME and LCs-TME. B,C) Kaplan–Meier analysis of OS and DFS between ITHtyperlo phenotype and ITHtyperhi phenotype in the
training and testing sets. P values were calculated with the log-rank test. D,E) Bar plots showing the distribution of OS status and DFS status on the
ITHtyperlo phenotype and ITHtyperhi phenotype. P values were calculated using Fisher’s exact test. F) Kaplan-Meier analysis of OS between ITHtyperlo

phenotype and ITHtyperhi phenotype on George & Jiang cohort (n = 121). p-value was calculated with the log-rank test. G) ROC curves for ITHtyper
on Roper cohort (received anti-PDL1 treatment). Dot plot showing the difference in the ITHtyper score between the NCB group and the CB group
receiving immunotherapy. p-value was calculated using the Wilcoxon test. H) Bar plot showing the distribution of ICB response on ITHtyperlo phenotype
and ITHtyperhi phenotype. DFS, disease-free survival; OS, overall survival; ROC, Receiver operating characteristic; CB, clinical benefit; NCB, no clinical
benefit.
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pathological specimens and correlated them with patient out-
comes. Our ROI-based approach provided an intra-tumoral pic-
ture, allowing in-depth exploration of molecular patterns, bio-
logical pathways, and immunological features central to ITH in
SCLC from a multi-regional perspective. To ensure the robust-
ness of our analysis, we controlled for sampling bias in two main
ways. First, we rigorously excluded cases of combined SCLC (no-
torious for its heterogeneity with a mixture of different non-small
cell components). In addition, we excluded multi-regional sam-
pling bias by comparing SPD between any ROIs. Based on 25
SCLC patients, we identified a spatially resolved gene signature
delineating three distinct ITH characteristics in SCLC. These re-
sults highlight the presence of discrete tumor clones, each with
unique molecular features, even within morphologically identi-
cal regions, consistent with the concept of molecular heterogene-
ity introduced in a previous study.[14c] Our ITH-based classifica-
tion not only revealed the canonical neuroendocrine character-
istics of SCLC in those with intermediate to low ITH, but also
implied a highly active EMT transition in ITH-high tumors with
increased metastatic potential.[16]

Our study also delved into the realm of immune cell compo-
sition, and identified CD8+ T-cells as a critical indicator associ-
ated with ITH status, which was confirmed by conventional IHC.
Specifically, tumors with intermediate ITH exhibited a “hot” im-
mune microenvironment, enriched for CD8+ T-cell infiltration
and increased expression of antigen-presenting molecules, co-
stimulatory molecules, and immune checkpoints. In contrast,
tumors with either high or low ITH exhibited lower levels of
local immunogenicity. These findings, consistent with previous
studies,[17] suggest crosstalk between tumor cells and TIME.
These tumor-originated dynamics may dictate regional immune
heterogeneity, with the reactive subtype (m-ITH) exhibiting an
inflamed TIME consistent with Tian’s findings of the interplay
between cancer cell ITH and the TME at the single-cell level.[7b]

Furthermore, ITH-associated meta-programs in malignant tu-
mor cells showed a negative correlation with CD8+ T-cells cy-
totoxicity and cell cycle meta-programs,[18] suggesting a resistant
microenvironment within highly heterogeneous tumors that im-
pedes the recruitment of cytotoxic T-cells. Crucially, the spatial
mapping of all ROIs at the patient level highlights the signifi-
cant impact of ITH on patient survival and therapeutic outcomes.
These findings suggest a potential role for high ITH in immune
suppression and/or evasion, ultimately facilitating metastatic po-
tential and leading to poorer patient prognosis. In light of recent
data demonstrating the benefit of immune checkpoint inhibitors
in combination with chemotherapy for a subset of patients with
extensive-stage SCLC,[2] our findings hold promise to aid in the
stratification of SCLC patients using ITH-associated transcrip-
tional profiles.

Another interesting finding of our study is the presence of ITH
across molecular subtypes, highlighting the existence of different
molecular subtypes within different spatial regions of the same
tumor. These observations shed light on the challenges of current
molecular subtyping methods, including issues with prognostic
stratification and low reproducibility.[8] Furthermore, these find-
ings indicate that SCLC molecular subtypes do not manifest uni-
formly across spatially distinct regions within the same tumor.
Instead, the intra-individual diversity of molecular subtypes is
distributed across different tumor regions. This molecular het-

erogeneity may be due to the neuroendocrine nature of SCLC
itself, which may explain the challenges in applying current tran-
scriptional subtyping approaches for clinical purposes.

The ITHtyper, developed through our ITH subtyping, is a valu-
able tool for distinguishing the clinical phenotypes of SCLC.
This strategy is consistent with similar efforts to identify gene
sets associated with heterogeneity in other malignancies, such
as glioblastoma and melanoma, where specific genes have been
linked to key drivers of tumor heterogeneity.[19] Our current study
used a deep-autoencoder-based algorithm and a bootstrap strat-
egy to identify the top 10 significant genes associated with SCLC
heterogeneity. These genes include those involved in EMT, tran-
scriptional regulation, growth and development, and the im-
mune checkpoint inhibitor PD-L1. For example, the TPBG and
GPR31 genes are highly correlated with the HCs-TME subset
and have known associations with tumor cell migration, prolif-
eration, and recurrence via EMT.[20] PCP4, specific for the LCs-
TME subset, is a potential therapeutic target as it inhibits EMT
and promotes apoptotic cell death.[21] In addition, ZIC1, which
is frequently inactivated by promoter hypermethylation, acts as
a tumor suppressor by modulating PI3K/Akt and MAPK path-
ways and influencing EMT in several cancers, including thyroid,
breast, and gastric cancers.[22]

However, it is important to acknowledge the limitations of
our study. First, our experimental cohort focuses primarily on
treatment-naïve limited-stage tumors, excluding extensive-stage
specimens and those treated with chemotherapy or chemoim-
munotherapy before surgery. However, we validate our critical
findings in independent cohorts, thereby strengthening the gen-
eralizability of our results beyond limited-stage SCLC cases. Sec-
ond, while our study efficiently identifies significant alterations
in transcriptional expression, other omics data, such as the pro-
tein or metabolite level, can be explored to cross-validate our find-
ings. Subsequent investigations integrating spatial proteomic
and metabolomic assessments will provide a more comprehen-
sive understanding of ITH in SCLC. Third, the spatial sampling
of ROIs was performed at a “small-bulk” level, potentially lead-
ing to an underestimation of subclonal diversity at the single-cell
level. The use of single-cell resolution in situ has the potential
to improve our understanding of the heterogeneity present in
SCLC tumors. However, the definition and transcriptional pro-
filing of sub-regional ITH in our study is more consistent with
our previous pathological observations and prone to be clinically-
meaningful, which was performed under thorough pathological
guidance beyond the single-cell level. Furthermore, it is crucial to
consider the spatial and temporal heterogeneity in the context of
tumor evolution. An analysis of the dynamic alterations in ITH
over time, coupled with longitudinal sampling, is essential for a
comprehensive understanding of tumor evolution and its impact
on treatment response.

4. Conclusion

In conclusion, this study provided a spatial multi-regional tran-
scriptomic landscape of SCLCs and uncovered unique spatial
transcriptomic features characterized by distinct molecular
profiles, underlying biological processes, immune phenotypes,
and molecular subtype diversity. These features correlate signif-
icantly with patient prognosis and shed light on intra-tumoral
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heterogeneity. This spatially subregion-focused investigation
provides an invaluable resource for studying tumorigenic ITH
and elucidates its underlying mechanisms and interplay with
the TIME. Leveraging machine learning to classify tumors based
on ITH scores represents an initial step towards understanding
SCLC in a spatially resolved framework, with the potential to
pave the way for improved patient stratification in the clinical
translational setting.

5. Experimental Section
Study Cohorts: The study cohort consisted of 25 treatment-naïve pa-

tients with limited-stage SCLC (LS-SCLC) patients who underwent clinical
resection. These patients were recruited from the archived electronic med-
ical record system (EMRS) at the Department of Pathology, Cancer Hospi-
tal, Chinese Academy of Medical Sciences (CHCAMS) between 2009 and
2016, and all were pathologically confirmed. Detailed clinical and patho-
logical information of this cohort is shown in Table 1. The inclusion criteria
were as follows: 1) no preoperative treatment; 2) availability of complete
clinical and follow-up data, including disease-free survival (DFS) and over-
all survival (OS); 3) pathological confirmation of pure SCLC by routine
differential immunostaining for neuroendocrine biomarkers (ChrA, CD56,
Syno) and TTF-1, Ki-67, according to the 5th World Health Organization
thoracic tumor classification.[1a] This retrospective study was approved by
the Ethics Committee and Institutional Review Boards of the National GCP
Center (approval number 22/250-3452), and all patients were exempted
from informed consent due to the retrospective nature of this study.

Tissue Microarray (TMA) Construction: A customized TMA was pre-
pared by two experienced pathologists who thoroughly reviewed sections
from all patients to identify representative tumor areas. Two representa-
tive cores, each with a diameter of 1.5 mm, were extracted from the tu-
mor central region of each patient and placed on a recipient TMA master
block. Areas of necrosis, fibrosis, hemorrhage, and cystic changes were ex-
cluded during core selection. Following TMA preparation, serial sections
were prepared for pathologic staining and spatial profiling, respectively.
One section was stained with hematoxylin and eosin (H&E) for pathologi-
cal characterization of more than 90% neoplastic content to ensure tumor
purity. The parallel sections were then used for spatial transcriptome pro-
filing.

ROI Selection Strategy for Spatial Profiling: To prepare for spatial pro-
filing, 4 μm thick TMA sections were deparaffinized, antigen retrieved,
and simultaneously stained with target-detecting probes and concurrent
morphologic antibodies (details below). To visualize the TME, fluorescent
antibodies specific for the pan-leukocyte marker CD45 (CST 13917), the
epithelial cell marker PanCK (Novus NEP2-33200), and the nuclear stain
SYTO13 (NanoString, 121300310) were used for morphological staining.
After staining and hybridization, the slides were loaded onto the GeoMx
Digital Spatial Profiler (DSP) instrument (NanoString, Seattle, USA) and
scanned to generate fluorescent tissue images before ROI selection. Tri-
color immunofluorescence was used to identify tumor cells, infiltrating
lymphocytes, and all nucleated cells in the tumor-enriched area (exclud-
ing necrotic regions). ROIs, each with a 600 μm diameter and mainly in
a circular shape, were then selected. After selection, each ROI was anno-
tated by pathologists to confirm the location and content of the tumor. Due
to limited areas available for spatial profiling, 2–9 ROIs were selected per
patient. A total of 79 ROIs were selected from 25 FFPE specimens. Near-
identical ROIs were chosen to ensure data consistency arising from highly
heterogeneous tissue compartments, even at the intra-tumoral level. The
collected ROIs were then processed according to the protocols described
in the following sections. The x-y coordinates of each ROI, generated from
the DSP data, were used for the subsequent ITH analysis.

Transcriptome-Wide Spatial RNA Profiling: Transcriptome-wide spatial
RNA profiling was performed using the Human Whole Transcriptome
Atlas (WTA) panel developed for the DSP technology. TMA slides, pre-
pared as described above, were hybridized with detection probes at 37 °C

overnight and subjected to morphological staining. ROIs were harvested
using an ultraviolet (UV)-guided built-in technique that allowed the de-
position of photocleavable oligonucleotides into individual wells on a 96-
well plate.[23] Samples were then transferred to a new plate for probe hy-
bridization and PCR amplification. The resulting products were purified
and quality assessed before being subjected to next-generation sequenc-
ing (NGS) on an Illumina NovaSeq 6000 instrument. After sequencing,
the FASTQ files were converted into digital count conversion (DCC) files,
and uploaded to the DSP system to generate a count matrix for individ-
ual ROIs. For inter-ROI comparison, the RNA data was normalized to Q3.
The limit of quantitation (LOQ) for each ROI was determined using the
formula: LOQ = geometric mean (NegProbe_i) × geometric standard de-
viation (NegProbe_i) ×102 The RNA data was covered to count level and
subjected to log2(x+1) normalization in this study.

Publicly Bulk RNA-Seq Cohorts: Three SCLC cohorts (n = 143) with
available RNA-seq data and clinicopathologic information from the Gene
Expression Omnibus (GEO) databases and related publications were col-
lected, including 50 patients from GSE60052 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc = GSE60052),[24] 77 patients from George’s
study (referred to as George cohort)[25] and 16 patients who received anti-
PD-L1 antibody durvalumab in combination with olaparib from Roper’s
study (referred to as Roper cohort).[26] The mRNA expression profile
in GSE60052 was transformed to the count level and normalized to
log2(x+1). The RNA-seq data of the George cohort was normalized to the
fragments per kilobase million (FPKM), and the transcriptome profile of
the Roper cohort was normalized to reads per kilobase million (RPKM).

Quantitative Assessment of Intra-Tumoral Spatial Heterogeneity: Devi-
ating gene Expression Profiling Tumor Heterogeneity (DEPTH), a bulk
sequencing-based approach to evaluate the ITH levels in mRNA data,[27]

was used to quantify intraregional ITH for each ROI based on alterations of
gene expression profiles. A low DEPTH score represents low intra-regional
ITH, while a high score suggests the opposite. Spatial inter-ROI ITH within
the same tumor was quantified using the consistent score (C-score) by cal-
culating Spearman correlation coefficients of the transcriptomic profiles
between the two ROIs being compared.[28]

Gene-Gene Functional Association Network: Differential expression
analysis was performed using the R package “limma” (v3.50.3) on the Q3
normalized DSP data. Differentially expressed genes (DEGs) were iden-
tified using a threshold of p-value < 0.05 and fold-change (FC) > 1.5.
The Spearman correlation coefficient was calculated to measure the co-
expression relationship between two sets of DEGs. The co-expressed DEG
pairs with Spearman correlation coefficient ≥ 0.6 and p-value < 0.01 were
used to construct the gene–gene functional association network. The net-
work was built and visualized using the R package “igraph” (1.4.3).

Functional Enrichment Analysis: Gene set enrichment analysis (GSEA)
for hallmark gene sets from the Molecular Signatures Database (MSigDB,
v7.2) was performed using the “enricher” function of the clusterProfiler
package (v4.8.1).[29] Functional enrichment analysis of Gene Ontology
(GO) for specific gene sets was performed using the Cytoscape plug-in
“ClueGO” (v2.5.9).[30]

Computationally Estimation of Immune Cell Infiltration: The relative
abundance of 22 immune cell populations was estimated from the RNA ex-
pression data using the CIBERSORT method.[31] The absolute abundance
of eight immune cell populations from the transcriptomic data was quanti-
fied using the Microenvironment Cell Populations-counter (MCP-counter)
method.[32] Another complementary algorithm, Tumor Immune Estima-
tion Resource (TIMER),[33] was also used to infer the abundance of six
tumor-infiltrating immune cells based on the gene expression profiles.

Immunohistochemistry (IHC) Staining: IHC was performed on 4 μm
thick full sections obtained from selected blocks using fully automated
Roche’s immunohistochemical instruments (BenchMark ULTRA IHC/ISH
System from Roche Diagnostics). Standard protocols were followed for the
IHC procedure. After deparaffinization, sections were subjected to antigen
retrieval at 97 °C for 30 min. The sections were then blocked with H2O2
for 5 min at room temperature and incubated overnight at 4 °C with pri-
mary antibodies against CD3 (MXB, rat# abMX036) and CD8 (ZXGB-bio,
rabbit# abSP16). After primary antibody incubation, sections were incu-
bated with HRP-conjugated secondary antibody for 30 min at 37 °C and
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Table 1. Clinicopathological characteristics of SCLC patients.

Characteristics CHCAMS cohort [n = 25] Jiang cohort [n = 50] George cohort [n = 77] Roper cohort [Immunotherapy, n = 16]

Sample type SCLC SCLC SCLC SCLC

Sex [n, (%)]

Male 16 (64%) 45 (90%) 52 (67.5%) 8 (50%)

Female 9 (36%) 5 (10%) 25 (32.5%) 8 (50%)

Age [n, (%)]

< = 65 22 (88%) 38 (76%) 41 (53.2%) 11 (68.75%)

>65 3 (12%) 12 (24%) 36 (46.8%) 5 (21.25%)

Smoking [n, (%)]

Yes 12 (48%) 35 (70%) 75 (97.4%) 14 (87.5%)

No 13 (52%) 15 (30%) 2 (2.6%) 2 (12.5%)

Unknown 0 0 0 0

Tumor location [n, (%)]

Left 12 (48%) 0 0 0

Right 13 (52%) 0 0 0

Unknown 0 50 (100%) 77 (100%) 16 (100%)

PCI [n, (%)]

Yes 10 (40%) 0 0 0

No 15 (60%) 0 0 0

Unknown 0 50 (100%) 77 (100%) 16 (100%)

DFS status [n, (%)]

Recurrence 11 (44%) 0 0 0

Non-recurrence 13 (52%) 0 0 0

Unknown 1 (4%) 50 (100%) 77 (100%) 16 (100%)

OS status [n, (%)]

Alive 15 (60%) 23 (46%) 29 (37.7%) 1 (6.25%)

Dead 9 (36%) 25 (50%) 44 (57.1%) 15 (93.75%)

Unknown 1 (4%) 2 (4%) 4 (5.2%) 0

T stage [n, (%)]

T1 7 (28%) 9 (18%) 28 (36.4%) 0

T2 14 (56%) 28 (56%) 28 (36.4%) 0

T3 4 (16%) 8 (16%) 6 (7.8%) 0

T4 0 4 (8%) 5 (6.5%) 0

Unknown 0 1 (2%) 10 (13.0%) 16 (100%)

N stage [n, (%)]

N0 12 (48%) 11 (22%) 33 (42.9%) 0

N1 5 (20%) 5 (10%) 11 (14.3%) 0

N2 7 (28%) 32 (64%) 21 (27.3%) 0

N3 1 (4%) 1 (2%) 2 (2.6%) 0

Unknown 0 1 (2%) 10 (13.0%) 16 (100%)

M stage [n, (%)]

M0 25 (100%) 48 (96%) 54 (70.1%) 0

M1 0 1 (2%) 8 (10.4%) 0

Unknown 0 1 (2%) 15 (19.5%) 16 (100%)

Response [n, (%)]

CB 0 0 0 2 (12.5%)

NCB 0 0 0 13 81.25%)

Unknown 25 (100%) 50 (100%) 77 (100%) 1 (6.25%)
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developed with DAB substrate for colorimetric visualization in an au-
tostainer (Autostainer Link 48, Dako, Denmark). Slides were scanned on
the KFBIO Digital Slice Scanning System (KF-PRO-400-HI) and analyzed
using QuPath software v0.3.2, an open-source and user-friendly software
used for digital evaluation and analysis of pathologic features on whole-
slide images.[34] The pathologic evaluation included the calculation of a
composite score that considered both the staining intensity and the per-
centage of positive cells, all observed at 200×magnification.

Development of Gene Signature: The DSP data were used to develop
prediction models, and the ROIs were randomly divided into a training set
(70%) and a testing set (30%). A deep-learning algorithm called “Deep-
autoencoder” was used to identify a spatially resolved gene signature. To
ensure the robustness and reliability of the gene signature, the bootstrap
approach was used by randomly sampling 90% of the samples (with-
out replacement) with 500 iterations. The tuned parameters of “Deep-
autoencoder” were set as follows: activation = “Tanh”, hidden = 100, 300,
and 100, and epoch = 10. An extreme gradient boosting model (XGBoost)
was used to build the classifier for heterogeneity subtyping and risk strat-
ification using the spatially resolved gene signature from above. The XG-
Boost was implemented in the R package “XGBoost” (v1.5.2.1). The hyper-
parameters for tuning were set as follows: objective = “binary: logistic”,
n-round = 100, n-fold = 5, max depth = 5, subsample = 80%, colsam-
ple_bytree = 80%, and evaluation metrics = “error”.

Statistical Analysis: All statistical tests and graphical visualizations
were performed using the R software (v4.2.2) and the corresponding R
packages within the Rstudio (v2022.12.0+353). Unless otherwise stated,
Wilcoxon rank sum and Kruskal–Wallis tests were used to compare con-
tinuous variables between groups, and Fisher’s exact test was used to an-
alyze contingency table variables. High-dimensional data were reduced to
low dimensions and visualized using the t-distributed stochastic neigh-
bor embedding (t-SNE) algorithm. The correlation between two continu-
ous variables was calculated using Spearman’s correlation test. Unsuper-
vised hierarchical clustering was performed using the “ward. D2” func-
tion from the embedded R package “stats” (v4.2.2). For survival analysis,
Kaplan–Meier (K-M) plots were used to generate survival curves, and log-
rank tests were conducted to compare survival differences between patient
groups using the R packages “survival” (v3.4-0) and “survminer” (v0.4.9).
Receiver operating characteristic (ROC) curves and area under the curve
(AUC) were used to evaluate the performance and generalizability of the
classification model. Two-sided p values were considered statistically sig-
nificant with a threshold of 0.05.

Ethics Statement: This retrospective study was approved by the Ethics
Committee and Institutional Review Boards of the National GCP Center
(approval number 22/250-3452), and all patients were exempted from in-
formed consent due to the retrospective nature of this study.
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