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Single-cell and spatial proteo-transcriptomic profiling reveals
immune infiltration heterogeneity associated with
neuroendocrine features in small cell lung cancer
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Small cell lung cancer (SCLC) is an aggressive pulmonary neuroendocrine malignancy featured by cold tumor immune
microenvironment (TIME), limited benefit from immunotherapy, and poor survival. The spatial heterogeneity of TIME significantly
associated with anti-tumor immunity has not been systemically studied in SCLC. We performed ultra-high-plex Digital Spatial
Profiling on 132 tissue microarray cores from 44 treatment-naive limited-stage SCLC tumors. Incorporating single-cell RNA-
sequencing data from a local cohort and published SCLC data, we established a spatial proteo-transcriptomic landscape covering
over 18,000 genes and 60 key immuno-oncology proteins that participate in signaling pathways affecting tumorigenesis, immune
regulation, and cancer metabolism across 3 pathologically defined spatial compartments (pan-CK-positive tumor nest; CD45/CD3-
positive tumor stroma; para-tumor). Our study depicted the spatial transcriptomic and proteomic TIME architecture of SCLC,
indicating clear intra-tumor heterogeneity dictated via canonical neuroendocrine subtyping markers; revealed the enrichment of
innate immune cells and functionally impaired B cells in tumor nest and suggested potentially important immunoregulatory roles
of monocytes/macrophages. We identified RE1 silencing factor (REST) as a potential biomarker for SCLC associated with low
neuroendocrine features, more active anti-tumor immunity, and prolonged survival.
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INTRODUCTION
Small cell lung cancer (SCLC) accounts for ~15% of all histological
lung cancer subtypes and is very aggressive, with extremely poor
survival1,2. Pathophysiologically, SCLC is a neuroendocrine (NE)
malignancy that is characterized by positive for chromogranin A
(CgA), Synapsin I (Syn), and neural cell adhesion molecule 1
(NCAM1, also named CD56) based on immunohistochemical
analysis3. Patients with limited-stage SCLC (LS-SCLC) are treated
by concurrent chemotherapy and thoracic radiotherapy4. Treat-
ment for patients with extensive disease (ES-SCLC) includes
systemic chemotherapy (cisplatin or carboplatin plus etoposide)
combined with immune checkpoint inhibitors (ICIs) targeting the
programmed cell death ligand 1 (PD-L1)/programmed cell death

protein 1 (PD-1) pathway. However, the clinical benefit from ICI is
limited for SCLC patients compared with other cancer types5

despite that most SCLC patients are smokers and that the tumors
usually have high tumor mutational burden (TMB), both of which
have been reported to be associated with clinical benefit for ICI6,7.
PD-L1 expression, a biomarker to predict ICI responses across

various cancers8, is extremely low in SCLC, suggestive of an
uninflamed tumor immune microenvironment (TIME)9–11. Moreover,
the TIME of SCLC is also heterogeneous12, which may further
dampen the anti-tumor immune response13. Immune infiltration in
both tumor nest and stroma has been reported to be associated
with cellular plasticity driven by NE differentiation14 as well as other
unknown intra-/interpatient heterogeneous factors within the TIME.
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A tumor-centric classification has been proposed at the
transcriptional level, with four SCLC subtypes based on their NE
status. SCLC-A is characterized by high achaete-scute homolog 1
(ASCL1) expression; SCLC-N is defined by neurogenic differentia-
tion factor 1 (NEUROD1) expression; SCLC-P is characterized by
upregulated POU domain, class 2, transcription factor 3 (POU2F3)
expression; and SCLC-Y is characterized by expression of the Yes-
associated protein 1 (YAP1)15. SCLC-A and SCLC-N are believed to
be neuroendocrine-high (NE-high) compared to SCLC-Y and SCLC-
P subtypes, which are deemed as NE-low. NE-low subtypes may
respond better to ICI therapy14,16, reportedly due to superior
major histocompatibility complex (MHC) I antigen presentation
and functionally competent CD8+ T cells14. The TIME of NE-high
and NE-low SCLC has been previously defined using immunohis-
tochemistry (IHC), suggesting probable microenvironment-
directed patient stratification for ICI administration17. A more
recent study identified the SCLC-I (I for inflammation) subtype that
is associated with a higher level of immune infiltration and
superior benefit from ICI18.
Dynamic tumor–stroma interactions play an important role in

oncogenesis and TIME modulation19. The stroma mainly consists of
the basement membrane, fibroblasts, extracellular matrix, and
vasculature, providing essential nutrients and support for an array
of immune cells. The dynamics of immune cell migration and
cellular crosstalk across tumor nest and stroma are believed to
eminently impact therapeutic efficiencies. Qualitative IHC has
demonstrated that immune cells are mainly localized in the stroma,
with very few infiltrating the tumor nest17. However, the broad
spectrum of spatial interplay in SCLC has yet to be characterized20.
Tumor microenvironment-driven research in SCLC remains

sparse21. In particular, the immune subsets and their abundance,
the interaction between tumor nest and stroma, and the
migration of immune cells in SCLC have not been systemically
studied, largely due to the scarcity of resected SCLC tumors and
the lack of a sub-histologically definable sampling strategy to
generate high-plex multi-omics profiles across tumor and stromal
compartments. To fill this void, we retrospectively and prospec-
tively collected SCLC specimens and applied single-cell RNA-
sequencing (scRNA-seq) and digital spatial profiling (DSP) to study
the interactions between tumors and immune cells in the context
of NE signals. We first obtained scRNA-seq data of 111,072 cells
from 19 samples (primary tumors, metastases, and peripheral
blood mononuclear cells (PBMCs)) from three patients with SCLC
and two patients with large cell NE carcinoma (LCNEC) as control
using 10x Chrominium technology. Meanwhile, formalin-fixed
paraffin-embedded (FFPE) specimens of 16 SCLC tumors and 4
para-tumor lung tissues were subjected to 10x Flex scRNA-seq
resulting 189,717 cells. We established a broad region-directed
spatial proteo-transcriptomic (SPT) landscape of tumor nest, tumor
stroma, and distant lung tissue from 44 treatment-naive SCLC
patients using DSP22 covering 18,000 transcripts and 60 key
immune modulatory proteins. We delineated the intra-tumor
heterogeneity (ITH) and the relationship between tumor and
stroma, which identified a RE1 silencing factor (REST)-mediated
regulatory axis in a subset of patients that may have superior
benefit from ICI therapy. We further explored publicly available
SCLC bulk and scRNA-seq datasets to validate our spatial and
communication analyses.

RESULTS
scRNA profiling delineates NE features associated with
immune infiltration and cell–cell interaction (CCI)
Given the potential influence of NE characteristics on TIME in SCLC
patients21, our investigation began with an examination of the
correlation between NE features and SCLC TIME through scRNA-
seq. We analyzed nineteen samples obtained from three SCLC
patients and two LCNEC patients, encompassing primary tumors

(n= 3), liver metastases (n= 2), lymph node metastases (n= 4),
malignant pleural effusions (n= 2), tumor-adjacent normal lung
tissues (n= 4), and matched PBMCs from the same patients
(n= 5) (Fig. 1a). To enhance statistical power, we integrated our
dataset with publicly available scRNA-seq data from Chan et al.23.
In total, 111,072 cells with scRNA-seq transcriptomic profiles
underwent subsequent analysis. Notably, a consistent cellular
clustering pattern was observed between internal and external
scRNA-seq data, primarily distinguished by tissue-of-origin
(Fig. 1b). The analysis revealed a diverse TIME composition
comprising 24 major cell types (Fig. 1c). Notably, tumor epithelium
representing three molecular SCLC subtypes (SCLC-A, SCLC-N, and
SCLC-P), characterized by distinct expression of NE biomarkers,
was identified (Fig. 1c). Furthermore, developmental trajectory
analysis using DDRtree (an algorithm integrated into pseudo-time
analysis) confirmed the association of two marker genes (ASCL1
and POU2F3) with distinct NE status, with NE-high (ASCL1-high)
and NE-low cells (POU2F3-high) appearing in different branches
(Supplementary Fig. S1a, b).
We subsequently reorganized the data, categorizing it based on

either tissue-of-origin phenotypes or major functional immune cell
types (Fig. 1d). PBMCs exhibited a diverse array of immune subsets
(Fig. 1d, e) with CD4+/CD8+ T effector/memory (Teff/Tmem) cells
and monocytes/dendritic cells (Monos/DCs) representing the
majority, while CD8+ exhausted T cells (Texh) and CD4+ regulatory
T cells (Treg) were less common (Fig. 1d, right). Regarding immune
cell composition, primary and metastatic tumors were mainly
characterized by CD8+ Texh, CD4+ Treg, neutrophils, and CD4+

conventional T cells (Tconv), whereas the para-tumor region was
dominated by granulocyte lineages, including neutrophils, mono-
cytes, and macrophages (Supplementary Fig. S1a).
To delve deeper into the interaction between NE-high (SCLC-A

and SCLC-N) and NE-low (SCLC-P) cancer cells and immune cells,
we computed CCI scores between cancer cells and seven key
immune cell subsets (Fig. 1f). While different tumor subtypes
(SCLC-A, -N, -P) displayed close interactions among themselves,
they exhibited varying levels of epithelium–immune crosstalk with
B cells, T cells, neutrophils, DCs, and plasma cells (Fig. 1f).
Particularly noteworthy was the strong association of all subtypes
with macrophages (Fig. 1f), a trend further supported by individual
crosstalk component analysis via principal component analysis
(PCA) (Fig. 1g), wherein SCLC-A and SCLC-N showed close relation,
while macrophages demonstrated substantial independence from
other immune cell types, suggesting a potentially unique role
within the TIME (Fig. 1f).
Thus far, our preliminary data have suggested the presence of

heterogeneous neoplastic cell populations within patients, along
with shared and distinct tumor–immune interactions. However,
these findings have been constrained by the limited number of
patients analyzed. To address this, we extended our analysis to
include an independent cohort comprising 16 SCLC tumors and 4
para-cancerous controls (Fig. 1h). By employing Flex scRNA-seq
(10x Genomics) on these specimens, we expanded our investiga-
tion to confirm the intra-patient ITH (Fig. 1i). While SCLC-A and
SCLC-N exhibited close relation, the NE-low subtype (SCLC-P)
appeared more distinct (Fig. 1i).
Given the significant presence and dynamic cancer–immune

crosstalk observed, particularly involving Mono/Macro popula-
tions, we sought to trace the origin of specific Mono/Macro
populations interacting with local cancer cells. As monocytes from
PBMCs can differentiate into organ-specific lineages, we utilized
pseudo-time trajectory analysis to identify transitional potentials
within these populations. Our analysis revealed three distinct
Mono/Macro lineages branching into various states, with two
primarily PBMC-specific and a third monocyte population
transitioning into a residential epithelium-interacting subtype
(Fig. 2a). Subsequently, we identified differentially expressed
genes (DEGs) enriched in this tumor-interacting subset. Compared
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to PBMC-enriched subsets, the TIME residential subset showed
significant associations with T-cell activation, as well as concurrent
MHC complex formation and peptide antigen presentation,
suggesting a potential anti-tumor role co-regulated via the
Mono/Macro axis in the SCLC TIME (Fig. 2c, d).

Based on the aforementioned conclusion, given that CD14+

myeloid cells can differentiate into Mono/Macro upon interaction
with various cell types such as alveolar, cancer, and endothelial
cells, and considering that macrophages are among the most
abundant immune subsets capable of presenting MHC and
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activating T cells upon stimulation24, we proceeded to evaluate
the distribution patterns of CD11c (monocyte marker) and CD68
(macrophage marker) using multiplex immunofluorescence. As
anticipated, we observed a significantly higher infiltration of
macrophages compared to monocytes within the SCLC micro-
environment, indicating a locally adapted differentiation of
monocytes into macrophages (Fig. 2d). These findings suggest
myeloid adaptation and transformation into macrophages within
the context of the SCLC microenvironment. Furthermore, we
examined single-cell-level cell–cell communication by analyzing
the crosstalk intensity between different cell types. Distance-based
clustering revealed that aside from major immune cell interactions
and the general tendency of an under-inflamed TIME in SCLC-A
and SCLC-N subtypes, macrophages (tumor-associated and M2-
like) were predominantly associated with the SCLC-P subset,
indicating a yet-to-be-uncovered mechanism (Fig. 2e).

DSP identifies cell composition and spatial gene regulatory
networks associated with heterogeneity of NE features
Thus far, our scRNA-seq profiling has revealed the cellular
heterogeneity between NE-high and NE-low cells in SCLC, along
with the potential transformation of myeloid cells into macro-
phages within the local TIME. It is conceivable that the maturation
of myeloid populations within the tissue milieu could lead to
macrophage expansion and the recruitment of other immune
cells, particularly after interacting with cancer cells. However, the
intricate communication between tumor and stromal cellular
components, as well as the spatial complexity of the TIME, cannot
be fully elucidated using scRNA-seq alone. Therefore, we have
employed DSP, an advanced ultra-high-plex transcriptomic and
proteomic profiling technique, to dissect the complex spatial
interaction within the SCLC TIME.
Since NE-high and NE-low SCLC are deemed to have distinct

pathological features25, we initially assessed the histologic char-
acteristics of 44 treatment-naive LS-SCLCs by quantifying T-cell
infiltration levels, known to correlate with clinical benefit from ICI26.
Through IHC, we evaluated the expression levels of CD3, CD4, CD8,
as well as PD-L1 (both tumor proportion score (TPS) and combined
positive score (CPS)). We found that higher CD4 level was
associated with longer overall survival (OS) (Fig. 2f, P < 0.05), while
CD8 and tumor-infiltrating lymphocyte (TIL) scores approached
statistical significance (Supplementary Fig. S2, P= 0.051 and 0.083,
respectively). Moreover, higher PD-L1 CPS scores conferred a
greater survival benefit compared to PD-L1 TPS, underscoring the
potential role of stromal-originated cellular components in
determining clinical outcomes, as previously reported27.
Upon validating our LS-SCLC cohort and recognizing the

potential significance of T-cell levels and stromal cellular
components in regulating the TIME, we proceeded to establish a
comprehensive region-of-interest (ROI)-directed SPT landscape to
uncover regulatory mechanisms within the multicellular context of
SCLC (Fig. 3a, b). This analysis involved profiling 18,000 transcripts
(whole transcriptome atlas (WTA)) and 60 key tumor-immune
proteins across 245 ROIs, which included tumor-adjacent normal
lung epithelium (hereafter termed para-tumor ROI), tumor cell-
enriched areas (inside the tumor area and cytokeratin-positive;

hereafter termed tumor nest ROI), and immune/T-cell-enriched
areas (inside the tumor area and CD45+/CD3+; hereafter termed
tumor stroma ROI), from the aforementioned 44 LS-SCLC tumors
(Fig. 3b). Technically, following merging and normalization, both
spatial whole transcriptome and proteome data exhibited clear
separation of the three pre-defined spatial regions, thereby
reinforcing the rigor of our results (Fig. 3c). While the tumor nest
showed the lowest inter-ROI variance (WTA, xvar= 0.1122781,
yvar= 0.3680549), protein expression spanned dynamically,
exhibiting the highest inter-ROI heterogeneity (WTA, xvar=
0.1274768, Welch t test P value < 2.2e–16, yvar= 0.9755725,
Welch t test P value= 7.747e–14; Protein, xvar= 0.1949548, Welch
t test P value < 2.2e–16, yvar= 0.7971868, Welch t-test P
value= 2.417e–06) (Fig. 3c).
To gain deeper insights into intra-tumoral heterogeneity, we

conducted a DEG analysis between the tumor nest and tumor
stroma ROIs and elucidated their functional roles using Gene
Ontology (GO) pathways (Figs. 3d, 4a). A subset of genes
upregulated in the tumor nest were linked to immunoglobulin
production and function (Figs. 3d, 4a). Conversely, the transcrip-
tomic profiles specific to the tumor stroma were associated with
diverse immune regulation and reprogramming processes,
including T-cell expansion, active antigen processing and pre-
sentation, DC and B cell differentiation, macrophage-mediated
cytokine production, and granulocyte translocation (Fig. 4a).
Furthermore, our spatial proteomic data also indicated signifi-
cantly higher B cell activity (marked by CD20+) in the tumor nest
compared to the tumor stroma, underscoring the active antibody
production originating from the tumor-enriched region (Fig. 4b).
Notably, residential macrophages, as identified through our
single-cell analysis, were found to be upregulated in SCLC but
were predominantly associated with the tumor-surrounding
stroma, as evidenced by higher levels of CD163 and CD80 present
in the immune stroma (Supplementary Fig. S3). From a biomarker
translation perspective, we systematically profiled differentially
expressed proteins associated with OS. In immune stroma regions,
higher levels of the total immune cell marker CD45, memory T-cell
marker CD45RO, and cytotoxic immune marker GZMB were
associated with longer OS, while higher expressions of neutrophil
maker CD66b and hematopoietic stem cell marker CD34 were
associated with shorter OS (Fig. 4c).

Conventional NE markers and classifications show ITH of SCLC
NE features, as delineated by transcriptomic profiles from bulk
sequencing, delineate the molecular subtypes of SCLC18,28. We
next sought to define the molecular subtypes based on the WTA
data collected from sub-histologically defined regions within
these SCLC tumors. Initially, we extracted 48 key genes previously
linked to SCLC NE differentiation25 and evaluated their expression
across tumor nests using the WTA dataset. As anticipated, NE-high
markers such as ASCL1, CHCA, KIF1A, RUNDC3A, BEX1, and
TAGLN3 exhibited upregulation and co-clustering, while NE-low
markers including YAP1, CAV1, ABCC3, MYOF, and RAB27B
displayed general downregulation and were grouped together
(Fig. 5a). Subsequently, we computed NE scores for each patient’s
tumor at the ROI level, revealing significantly varied distributions

Fig. 1 NE features and tumor spatial locations were associated with immune cell abundance and interactions. a Schematic diagram of the
ZJCC scRNA-seq study design. b Projection of the data onto the Chan et al. reference dataset for precise cell type classification on Uniform
Manifold Approximation and Projection (UMAP). Different colors represent sample sources. c Annotations of SCLC cells of different molecular
subtypes (SCLC-A, SCLC-N, SCLC-P) and non-malignant cells. d Standard PAGA graph representing the topological information of the main
immune cell types and spatial locations. e The network of main immune subsets from different tissues. Colors of dots in the network represent
different sources. The size of the dots represents the abundance of each cell type. The weight of the lines represents the closeness of the
interaction between each pair of immune subsets. f Crosstalk between cancer cells and immune cells via receptors and ligands identified by
CellPhoneDB. Line weight represents the probability of cellular crosstalk. g Cell types projected with PCoA into Euclidean distance based on
their potential CCI interaction. h Schematic of the 10x Flex FFPE sample scRNA-seq study design. i UMAP showing projection of the 10x Flex
data with cell type classification.
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of NE scores even among ROIs from the same tumors within both
NE-high and NE-low groups, indicating ITH within individual
tumors (Fig. 5b). Moreover, upon averaging the NE scores of ROIs
within each patient, we observed that patients with lower NE
scores were significantly associated with longer OS (Fig. 5c).

Recent studies have demonstrated that SCLCs of different
molecular subtypes, as defined by expression of canonical markers
(ASCL1, YAP1, NEUROD1, and POU2F3), exhibit distinct immune
profiles and responses to immunotherapy18,21. We next classified
the tumor nest ROIs based on the highest expression of these four
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classic SCLC subtyping markers. The ROIs were predominantly
categorized into the SCLC-A subtype, with SCLC-Y not being
identified in this cohort (Fig. 5d). Intriguingly, in 13 out of 43 cases,
ROIs within the same tumors were designated as different
molecular subtypes (patient 201916697 had only one tumor nest
ROI, and hence was not included in this analysis), underscoring the
significant ITH of NE features in SCLC and the limitations of SCLC
subtyping from single biopsies.
Next, we explored the potential relationship between major

immune cell markers derived from spatial proteomic profiles and
SCLC molecular subtypes. Globally, tumor nest regions exhibited
generally low immune expression, indicative of a cold tumor
microenvironment (Fig. 5e). No significant association was
observed between immune cell markers and SCLC subtypes
(Fig. 5f), potentially due to the relatively small sample size,
particularly in the immune-hot SCLC-P group. Although high
expression of general immune cell marker CD45 expression was
associated with improved OS (Fig. 5g), which is consistent with the
results from CD45 protein DPS data, CD45 did not show significant
association with any of these molecular subtype marker genes
ASCL1, POU2F3, or NEUROD1 (Fig. 5h).

Spatial tumor–immune proteo-transcriptomics pattern
stratifies patients associated with different immune
infiltration and NE features
We then capitalized on the extensive WTA data to construct
trajectories aiming to infer dynamic lineage changes during the
development of SCLC and to identify genes driving this
evolutionary process. Utilizing the Bayesian Information Criterion,
we delineated the minimum spanning tree based on the ROI
clusters to elucidate the global lineage architecture. Subsequently,
we fitted the main curve to define each lineage, facilitating the
identification of key genes associated with pseudo-time orders.
This approach enabled the discovery of lineage-associated clusters
in both tumor and stroma regions (Fig. 6a, b) and facilitated the
identification of genes driving tumor development. Within tumor
nests, these genes were primarily involved in extracellular matrix
organization and cell projection assembly processes (Fig. 6c, d),
while in the stroma, genes primarily involved in the regulation of
endocytosis and focal adhesion were identified (Fig. 6e, f).
We next constructed a cross-region map for tumor nest, tumor

stroma and para-tumor ROIs based on proteomics data using
hierarchical clustering. Since we only have 60 protein targets from
the DSP panel, we simply constructed a region-specific map based
on these 60 proteins. By calculating the mean expression levels of
individual proteins at each patient level, patients were overall
grouped into two clusters defined roughly by their corresponding
immune status (Supplementary Fig. S4a, b).
Furthermore, we applied K-means clustering to tumor regions

across patients and also observed two main groups (Fig. 6g, h). One
group exhibited relatively higher expression of immune checkpoints,
including PD-L1, TIM-3, and IDO1, along with infiltrated CD3+ T cells
and the monocytic marker CD14, defining it as an immune-hot. In
contrast, the other group (immune-cold) showed elevated levels of
the NE signal CD56, as well as increased expression of the Treg
markers FOXP3 and CD127, highlighting a resistant or exhausted

tumor microenvironment (Fig. 6h). Importantly, these findings
aligned with the spatially defined molecular subtypes, particularly
SCLC-A, which strongly correlated with an immune-deprived TIME in
SCLC, as evidenced by the aforementioned transcriptomic profiles.

Immune cell communication identifies the potential
regulatory roles of myeloid cells in TIME of SCLC
To further explore the immune regulatory mechanisms, we
retrieved SCLC scRNA-seq data to examine intercellular crosstalk
via cell–cell communication23. We calculated the nondirectional
Bray-Curtis-like CCI scores for each immune cell pair. We observed
communal ligand–receptor pairs present across multiple immune
cell interactions (e.g., MIF/CD74 and CXCR4), while some interac-
tion pairs were present in specific cells (e.g., HLA-DMA/CD4)
(Fig. 7a). Among the significant interactions, the LGALS9–PTPRC,
MIF–CD74/CD44, and TNF–TNFRSF1A pairs were the most abun-
dant interactions in the SCLC TIME (Fig. 7a; Supplementary Fig. S5).
Importantly, mutual signals between Macro/Mono and CD4+ Tregs
were observed, in line with potential functions of monocytes in
driving macrophage transformation in the local TIME described
above. These communications were likely mediated via the
CD86–CTLA4 and CD99–PILRA feedback loop (Fig. 7a; Supplemen-
tary Fig. S5). A reciprocal interaction was also noted between CD8+

T cells and plasma cells, which interacted via signaling through the
CD70–CD27 ligand–receptor pair (Fig. 7a; Supplementary Fig. S5).
We then proceeded to compile CCI scores and conducted

distance-based clustering based on the interaction strength
between the identified immune subsets (Fig. 7b). Consistent with
our previous observations, antigen presentation via MHC class
molecules mediated through the Macro/Mono/cDC axis exhibited
the tightest interaction with CD4+ Treg and exhausted T cells, as
indicated by closely clustered CCI scores within the TIME,
highlighting their central regulatory roles in the SCLC TIME
(Fig. 7b). Furthermore, we observed that CD8+ Texh, CD4+ Treg,
monocytes, and plasma cells formed a co-regulatory cluster,
suggesting potential interactions among these cell types (Fig. 7b).
We then validated these findings in the spatial context using

cell2location-WTA to deconvolute cell subtypes in the TIME within
each ROI. Interestingly, while the tumor stroma ROIs showed a
higher overall degree of immune infiltration, CD8+ Texh, gamma
delta T cells (Tgd), and neutrophils exhibited greater infiltration in
tumor nest regions compared to tumor stroma or para-tumor ROIs
(P < 0.05, Fig. 7d, e). Additionally, B cells were generally
upregulated across tumor nest ROIs and tumor stroma regions
compared to para-tumor ROIs (Fig. 7d).
We next sought to confirm whether the low Mono/Macro

infiltration and high infiltration of neutrophils, B cells, and CD8+

Texh were unique to SCLC. Deconvolution of bulk RNA-seq data of
TCGA lung adenocarcinoma (LUAD) vs a larger cohort of SCLC21

revealed significantly higher CD8+ Texh, B cells, and neutrophils
while significantly lower Mono/Macro infiltration in SCLC than in
LUAD (Fig. 7f, g, P < 0.05), consistent with our WTA results. Taken
together, these results highlight the unique features of cold TIME
in SCLC with overall low immune infiltration except CD8+ Texh, B
cells, and neutrophils, where the myeloid cells, including Mono/
Macro, may play essential regulatory roles.

Fig. 3 DSP profiles of immuno-oncological protein markers and whole transcriptomes from different pathological regions of SCLC.
a Schematic of DSP profiling. Surgically resected tumors (n= 45) were subjected to DSP profiling. Three cores per tumor were selected by
experienced lung cancer pathologists to build tissue microarray (TMA). One patient with final pathology showing large cell carcinoma was
excluded. A total of 245 ROIs with different pathological characteristics were selected for DSP staining and subsequent analysis. Serial sections
of the TMA were run through GeoMx RNA (top) or GeoMx protein (bottom) assays. Both assays were readout using next-generation
sequencing. b Concomitant mIF images of TMA. Representative images for the tumor nest (inside tumor area and cytokeratin-positive), tumor
stroma (inside tumor area and CD45+/CD3+ but cytokeratin–), and para-tumor region (tumor adjacent, morphologically normal lung) are
shown. c PCA of WTA data (top) and protein data (bottom) from each ROI. Each dot indicates one ROI, and the x axis and y axis represent
principal components 1 and 2, respectively. Green, orange, and blue colors represent tumor nest, tumor stroma, and para-tumor ROIs as
defined above, respectively. d Differentially expressed immune-related genes annotated using GO_Immune dataset.
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Fig. 4 Enriched biological processes based on DSP profiles in different pathological regions of SCLC. a Enriched biological processes of
tumor nest and tumor stroma ROIs. b The expression of CD20 protein in tumor nest (green), tumor stroma (orange), and para-tumor (blue)
ROIs. c The protein levels in tumor stroma (y axis) and tumor nest (x axis) respectively associated with OS of 44 LS-SCLC patients. Red dots:
proteins significantly (P < 0.05) associated with longer survival. Blue dots: proteins significantly (P < 0.05) associated with longer survival. The
log-rank test was used for the survival analysis, and patients were stratified by the median level of each protein.
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REST is a novel marker in SCLC
To further delve into the molecular and cellular drivers associated
with molecular classification in SCLC, we utilized non-negative
matrix factorization (NMF) to extract key expression modules in
tumor nest ROIs aggregated at the patient level. By using

cophenetic correlation values to guide the selection of the
optimal number of clusters, we identified clusters that aligned
with the previously established molecular subtypes defined by
ASCL1, NEUROD1, and POU2F3 (Fig. 8a). These clusters were then
ordered, and major enriched pathways were extracted, along with
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tumor stroma ROI data aggregated at the patient level. Group 1
(ZJCC_P1) exhibited high POU2F3 expression (NE-low), while
ZJCC_P2 and ZJCC_P3 showed higher ASCL1 and NEUROD1
expression (NE-high), respectively (Fig. 8b). Hallmark gene set
enrichment via GSVA revealed that the ZJCC_P1 group was largely
characterized by higher interferon responses and JAK-STAT
signaling compared to the NE-high groups (ZJCC_P1 vs ZJCC_P2,
P value= 0.07092; ZJCC_P1 vs ZJCC_P3 groups, P value=
0.00344). Additionally, compared to the NE-high groups, the NE-
low ZJCC_P1 group also exhibited an active antigen-presentation
characteristic, with numerically higher levels of monocytes and
DCs, although this difference was not statistically significant,
possibly due to the small sample size and high ITH within the TIME
(Fig. 5d, Wilcoxon test, P value= 0.2858).
At the ROI level, tumor nest ROIs were clustered into 4 groups.

ZJCC_G4 group had higher NEUROD1 expression (NE-high);
ZJCC_G1 group and ZJCC_G3 group had higher ASCL1 expression
(NE-high) and ROIs of ZJCC_G2 demonstrated high POU2F3
expression (NE-low) (Fig. 8c). Importantly, ROIs of NE-low ZJCC_G2
had significantly higher levels of monocytes (Wilcoxon test,
P value= 8.852e–08), DCs (Wilcoxon test, pDC: P value= 0.001402;
cDC: P value= 2.308e–06), and mast cells (Wilcoxon test,
P value= 1.143e–05), suggesting that relatively immune-primed
TIME in NE-low SCLC compared to NE-high SCLC (Fig. 8c).
Furthermore, we sought to identify transcription factors that

may impact the differential expression of genes in POU2F3-high
(NE-low) SCLC. Using motif analysis, we identified several
regulatory candidates (Fig. 8d, e). Among these genes, REST was
most consistent with the POU2F3-positive SCLC presentation in
ZGCC_P1 (Fig. 8b, Wilcoxon test, P value= 0.008033). This was also
proven by its expression across ROI classification and its high
expression in ZJCC_G2 group at ROI level (Fig. 8c, Wilcoxon test, P
value= 0.0001628). We cross-compared REST along with other
canonical classification markers in the spatial expression data, and
surprisingly, none of established SCLC subtyping markers ASCL1
(Wilcoxon test, ZJCC_P1 ~ ZJCC_P2, P value= 0.1151), NEUROD1
(Wilcoxon test, ZJCC_P1 ~ ZJCC_P2, P value= 0.3969) or POU2F3
(Wilcoxon test, ZJCC_P1 ~ ZJCC_P2, P value= 0.1438) was able to
successfully discern NE-low patients (ZJCC_P1) from other two NE-
high groups at the patient level, while REST clearly distinguished
NE-low patients (ZJCC_P1) from NE-high patients (ZJCC_P2 and
ZJCC_P3) (Wilcoxon test, P < 0.05) (Supplementary Fig. S6a). We
further evaluated the correlation between the spatial expression
of those subtyping markers and immune subsets based on the
deconvolution of spatial transcriptomic data. None of the
canonical molecular subtyping genes ASLC1, NEUROD1, or POU2F3
was correlated with most of the immune cell infiltration, while
expression of REST was positively correlated with multiple immune
cell subtypes with the highest correlation with Mono/Macro and
cDC (Fig. 8g). Importantly, the expression of REST was correlated
with OS in both our DSP dataset (Fig. 8f, top) and an external
validation set by Jiang, L. et al. (Fig. 8f, bottom)29, while none of
ASCL1, NEUROD1 or POU2F3 was associated with survival in either
our own DSP cohort (Supplementary Fig. S6b) or the external
cohort18. Taken together, these results suggest that REST may be a
superior marker for NE-low SCLC. Importantly, the tumor nest ROIs

with high REST expression corresponded to tumor stroma ROIs
with higher levels of T-cell infiltration and lower Mono/Marco
infiltration (Supplementary Fig. S6c).
Further, we investigated the SCLCs with high REST expression

(SCLC-REST) in relation to a recently reported SCLC subtype with
high immune infiltration termed SCLC-I18. The marker genes
used to define SCLC-I or SCLC-REST were compared (Fig. 9a, b).
Briefly, the genes with higher expression in SCLC-I than SCLC-A,
-N or -P were defined as the markers for SCLC-I. A total of 27
genes were shared between SCLC-I and SCLC-REST subtyping
panels, while 361 genes were unique in SCLC-REST panel and
640 were unique to SCLC-I subtyping panel (Fig. 9b). The marker
genes shared by SCLC-I and SCLC-REST panels are involved in
antigen processing and presentation highlighting the important
roles of antigen processing and presentation on the TIME
features of SCLC-I vs SCLC-REST subtypes. Genes unique to
SCLC-I panel were enriched for lymphocyte activation and
proliferation pathways, while the genes unique to SCLC-REST
were related to the regulation of the innate immune activation
(Fig. 9b). The heavier weight in innate immune activation and
less lymphocyte activation/proliferation in SCLC-REST subtyping
panel may reflect that SCLC-REST was based on tumor nest ROIs,
while SCLC-I panel was based on bulk sequencing of SCLC
tumors composed of both tumor nest and tumor stroma
presumably. Finally, we validated REST as an SCLC immunolo-
gical marker using an external SCLC scRNA sequencing
dataset30. Within this dataset, an epithelial cluster characterized
by higher REST expression was identified. Further analysis of
cellular crosstalk revealed a tighter interaction between REST+

SCLC cells and immune cells compared to ASCL1+ or NEUROD1+

SCLC subtypes (Supplementary Fig. S7).

REST-high SCLC has a more active immune response
Next, we aimed to investigate the potential role of REST in SCLC. We
began by examining the expression of REST in established SCLC cell
lines and its correlation with other immunogenic markers (Fig. 9c).
Interestingly, while the REST+ cell line H1672 was distinct from ASCL1
and POU2F3 cells, it showed co-expression with YAP1 as well as PD-
L1 and IRF1 (Fig. 9c). To further explore its function, we ectopically
expressed REST in an ASCL1+ NE-high SCLC cell line H69 and
observed downregulation of ASCL1 and HES1, validating its role as a
suppressor of neural differentiation in SCLC (Supplementary Fig. S8).
Subsequently, we used multiplex IHC to orthogonally validate our
findings. Leveraging the same TMAs from the DSP experiment, we
evaluated the expression of CD4, CD68, CD8, and REST, revealing a
positive correlation between CD4+ T cells and REST+ cells (R2= 0.39,
P= 0.016) (Fig. 9d, e). Similarly, trends of positive correlation were
observed between REST+ cells CD8+ cells, and CD68+ cells,
supporting an overall pro-inflammatory function of REST in SCLC
(Fig. 9e). Furthermore, we deconvoluted bulk RNA-seq data from
previous studies31 to consolidate these findings. As anticipated, REST
expression was positively correlated with CD4+ T conventional cells
but not CD4+ Tregs. Additionally, REST expression was positively
associated with Mono/Marco, CD8+ Teff, CD8+ Tmem, and negatively
associated with B cells and CD8+ Texh, consistent with our WTA data,
further supporting REST-high tumors as a pro-inflammatory subtype

Fig. 5 NE gene expression-based molecular subtyping and immune infiltration status. a The expression of 48 NE marker genes in all tumor
nest ROIs. b The GSVA analysis of the NE marker gene expression of all tumor nest ROIs within each patient (NE scores up and down).
c Kaplan–Meier survival curves of 44 LS-SCLC patients based on median cutoff point of NE scores. d Intra-tumor heterogeneity of previously
defined SCLC molecular subtypes in different ROIs within the same LS-SCLC based on the expression of ASCL1 (SCLC-A), NEUROD1 (SCLC-N),
and POU2F3 (SCLC-P). None of the tumors expressed YAP1 in this cohort. e Immuno-oncological and metabolism-related protein expression in
tumor nest (green), tumor stroma (orange), and para-tumor (blue) ROIs. f The aggregated patient-level expression of molecular subtyping
markers ASCL1, NEUROD1, POU2F3 (left) and the aggregated patient level of immuno-oncological protein markers in the tumor nest (top) and
tumor stroma (bottom). g Kaplan–Meier survival curves of 44 LS-SCLC patients based on median cutoff point of CD45 protein levels.
h Spearman correlation coefficients between the level of CD45 protein and expression of molecular subtyping markers.
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Fig. 6 Heterogeneity of immune infiltration in tumor nest vs tumor stroma of SCLC. a, b UMAP dimensionality reduction plot visualizing
WTA data from each tumor nest ROI (a) and each tumor stroma ROI (b). The colors of the dots represent clusters classified by Gaussian mixture
modeling. c, e Genes that change with pseudo-time were visualized using heatmaps of their corresponding expression levels in tumor nest
ROIs (c) and tumor stroma ROIs (e). d, f Enriched pathways of DEGs identified in tumor ROIs (c) and tumor stroma ROIs (f). g K-means clustering
of protein levels in tumor ROIs aggregated by patient IDs. h Heatmap of proteins that are differentially expressed in two groups, identified
using K-means clustering.
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of SCLC (Fig. 9f). Further validation using ImmuneCellAI-based
deconvolution on the dataset by George et al. revealed a positive
correlation of monocytes or macrophages with REST, reinforcing its
immune regulatory function within the SCLC TIME (Fig. 9g, h).

DISCUSSION
The aggressive nature of SCLC, as well as its diagnosis often
occurring at the metastatic stage, results in a paucity of primary
tumors for deep analysis, impeding our understanding of the

201609068
201623653
201716865
201926143
201839755
201823261
201629361
201713857
201919018
201911191
201833950
201814932
201800118
201527985
201626382
201942053
201704191
201528685
201609563
201528821
202002922
201932714
201734815
201517369
201812470
201608295
202011993
201729966
201936934
201622902
201730840
201808945
201916697
201712303
202012328
201915949
201929999
201506360
201731780
201931291
201731651
201722896
201508513
201718073

201718073
201508513
201722896
201731651
201931291
201731780
201506360
201929999
201915949
202012328
201712303
201916697
201808945
201730840
201622902
201936934
201729966
202011993
201608295
201812470
201517369
201734815
201932714
202002922
201528821
201609563
201528685
201704191
201942053
201626382
201527985
201800118
201814932
201833950
201911191
201919018
201713857
201629361
201823261
201839755
201926143
201716865
201623653
201609068

basis
1
2
3

consensus
1
2
3

silhouette
0.94

−0.27

0

0.2

0.4

0.6

0.8

1

C
on

se
ns

us
 m

at
rix

ASCL1

NEUROD1

POU2F3

REST

Patient_groups

CD8+ Texh
B cell
Mast
cDC
pDC
Mono/Marco
Plasma cell
NK
CD4+ Treg
CD8+ Teff
CD8+ Tmem
Tgd
CD4+ Tconv
Neutrophil

KRAS_SIGNALING_UP
INFLAMMATORY_RESPONSE
ANGIOGENESIS
EPITHELIAL_MESENCHYMAL_TRANSITION
DNA_REPAIR
MYC_TARGETS_V1
FATTY_ACID_METABOLISM
OXIDATIVE_PHOSPHORYLATION
ADIPOGENESIS
PROTEIN_SECRETION
PI3K_AKT_MTOR_SIGNALING
MTORC1_SIGNALING
UNFOLDED_PROTEIN_RESPONSE
GLYCOLYSIS
INTERFERON_ALPHA_RESPONSE
INTERFERON_GAMMA_RESPONSE
NOTCH_SIGNALING
PEROXISOME
TGF_BETA_SIGNALING
HYPOXIA
APOPTOSIS
IL2_STAT5_SIGNALING
P53_PATHWAY
TNFA_SIGNALING_VIA_NFKB

++
+

+ ++

++ +

+

+ +

+ +

+

++

+
+

+ +p = 0.006

Log−rank

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time

Strata ++ REST=high REST=low

18 12 2 1

24 7 0 0

0 20 40 60
Time (Days)

Number at risk

Jiang, L et. al. validation cohort

CD8+ Texh
Mast
cDC
pDC
Mono/Marco
Plasma cell
Tgd
NK
CD8+ Teff
CD4+ Treg
CD8+ Tmem
B cell
CD4+ Tconv
Neutrophil

ROI groups

Logo NES #Targets

4.032

3.237

Name

REST

IRF8

PAX7 3.255

MTF1 3.238

189

106

97

360

a b

c

d

e

f

g

ZJCC_P1 ZJCC_P2 ZJCC_P3

ZJCC_G1 ZJCC_G2 ZJCC_G3 ZJCC_G4

Mast
Neutrophil
Mono/Macro
Plasma cell
CD4+ Tconv
pDC
B cell
cDC
CD8+ Texh
CD4+ Treg
CD8+ Teff
CD8+ Tmem
NK
Tgd

Tu
m

or
 s

tr
om

a
Tu

m
or

 n
es

t
Tu

m
or

 n
es

t
Tu

m
or

 n
es

t

Tu
m

or
 n

es
t

REST
ASCL1
POU2F3
NEUROD1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

B
 c

el
l

C
D

4+
 T

co
n v

C
D

4+
 T

re
g

C
D

8+
 T

ef
f

C
D

8+
 T

ex
h

C
D

8+
 T

m
em

cD
C

M
as

t
M

on
o/

M
ac

ro
N

eu
tr

op
hi

l
N

K
pD

C
Pl

as
m

a 
ce

ll
Tg

d
A

SC
L1

PO
U

2F
3

N
EU

R
O

D
1

R
ES

T

B cell
CD4+ Tconv

CD4+ Treg
CD8+ Teff

CD8+ Texh
CD8+ Tmem

cDC
Mast

Mono/Macro
Neutrophil

NK
pDC

Plasma cell
Tgd

ASCL1
POU2F3

NEUROD1
REST

+ + ++ +

+

+ + + ++ + +
+

+ +
+ +++ + + +

p = 0.21

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Strata + +REST_Group=High REST_Group=Low

Low

High

Time (Days)

Number at risk

0 1000 2000 3000

Low
High

21 16 7 2

22 11 7 1

DSP cohort

−3

−2

−1

0

1

2

3

m
ea

nS
po

t_
fa

ct
or

−3

−2

−1

0

1

2

3

m
ea

nS
po

t_
fa

ct
or

Time (Days)

Y. Jin et al.

13

Cell Discovery



disease. Previous studies focusing on SCLC tumor subtyping based
on their NE features at either bulk or single-cell level have already
shown promising potential in directing treatment stratification18,25

and many keynote studies are underway. On the other hand, gene
expression-based classification is limited by the lack of spatial
information that is key to underpin the bona-fide CCI and
networking within the tissue microenvironment23. By incorporat-
ing both fresh samples and FFPE-archived tissues, our scRNA-seq
profiling recaptured the previous NE-based molecular subtypes
defined by ASCL1, NEUROD1, and POU2F3 but, more importantly,
added a cellular transformation trajectory from peripheral blood
immunity to local immunity highlighting potential roles of Mono/
myeloid cell populations in regulating the TIME dynamics of SCLC,
a finding also supported at protein level by our fluorescence
in situ profiling. The relationship of immune–epithelial interplay
differs across NE subtypes as revealed via our single-cell profiling,
validating previous findings wherein NE-low tumors have a
relatively higher association with multiple immune clusters,
including macrophages (both M1- and M2-like), B cells as well as
CD4+/CD8+ T cells. To gain deeper insights into the SCLC TIME, we
constructed an ROI-defined SPT profile, an approach that allows
greater potential to uncover critical mechanisms in deciphering
the complex TIME. Our spatial profiling conducted on 44 LC-SCLC
patients delineates vital differences happening across tumor nests,
immune stroma, and para-tumor regions. Our spatial full
transcriptome mapping not only chartered the tumor infiltration
status of multiple immune cells whereby previously identified B
cells, T cells subsets (CD4+ Treg/Tconv and CD8+ Tmem),
monocytes, and macrophages via scRNA-seq are predominantly
trapped within the tumor-surrounding regions but lowly
embedded into the tumor nests. These findings are partially
supported by previous studies indicating a lower T-cell infiltration,
but rather diversified tumor clonality12. In addition to our scRNA-
seq analysis based on multiple sites of SCLC where NE feature-
related CCIs were observed, our comprehensive spatial molecular
profile obtained at whole transcriptomic and key proteomic scales
ensures sub-histological level discovery that was unmet through
previous findings. Using pan-CK, CD3, and CD45 as morphological
guidance to decompose TIME, our spatial analysis also successfully
captured the molecular characteristics of SCLC with clear
separation of three spatial compartments (tumor nests, immune
stroma, and tumor-adjacent morphologically normal lung). Our
spatial transcriptomic data extracted from tumors are robust
enough to predict patient outcomes wherein NE-high tumor
status implies a worse prognosis, a finding proven by previous
studies. However, given the distinct molecular and immune
features in compartmentalized TIME, NE-driven molecular subtyp-
ing defined from the homogenized tissues is inevitably insufficient
and may somehow skew the biological understanding of SCLC. To
prove this, by focusing on the tumor nest ROIs across patients,
more than 30% of patients (13/43) had varying molecular
subtypes as defined via conventional subtyping markers ASCL1,
NEUROD1, and POU2F3 at ROI level even within the same tumor
cores, highlighting the existence of ITH of SCLC. These ROI-derived
data were also proven to correlate with distinct immune status as
stratified by ASCL1, NEUROD1, and POU2F3. In particular, spatially

derived protein expression profiles such as CD45 showed robust
predictive capacity for patient stratification with survival benefit,
again stressing the added value of spatial information for in situ
biomarker discovery (P < 0.0001). Together, these data suggest the
co-existence of multiple molecular subtypes within the same SCLC
tumors that may significantly impact the predictive power of these
molecular subtyping and certain spatially defined biomarkers may
also warrant further studies at larger scales.
Of further importance, in addition to the above findings from

spatial deconvolution analysis, our WTA data also indicate high
CD8+ Texh, high Tgd cells, and high neutrophils enriched in SCLC
tumor nests. CD8+ Texh cells are characterized by high PD-1,
CD38, and TOX expression, and are mainly featured by loss of
cytotoxic functions32. CD8+ Texh cells express factors that can
actively recruit monocytes into local TIME and, in turn, polarize
into residential macrophages, leading to exhaustion of CD8+ Teff
during chronic antigen exposure33. Though macrophages are
predominantly expressed in immune stroma regions, our WTA
data did suggest a certain degree of macrophage infiltration
within the tumor. This CD8+ Texh–macrophage interaction may
explain the predisposed cytotoxic T lymphocyte exhaustion under
a tumor-interacting context that is mediated via rising population
of tumor-associated macrophages, a potential mechanism causing
immunosuppression in SCLC.
As for Tgd cells upregulated in the tumor nests, since they are

believed to impact the innate immune response rather than
function via MHC-mediated antigen presentation34 their roles may
involve other compensatory anti-tumor mechanisms that may be
critical in the cold immune context of SCLC35. However, an
alternative explanation for the high Tgd infiltration in SCLC is its
failure to make the transition from innate to adaptive immune
response, leading to impaired anti-tumor immunity. To address
these, longitudinal studies may be needed to track the specific
evolution path of SCLC.
Another interesting finding from WTA data is the elevated level

of B cells within the tumor nest. This is further suggested by
upregulation of immunoglobulin production pathways in tumor
nests. These findings are in line with bulk RNA-seq data from
published TCGA SCLC dataset wherein comparison between LUAD
and SCLC via deconvolution methods implies higher ratio of B
cells in SCLC29. In most cancer types, B cells involve in local tertiary
lymphoid structure (TLS) formation, a prognostic indicator linking
with better clinical outcomes36. However, in our data, TLS scores
are relatively lower in tumor nests indicating tumor-enriched B
cells may be dysfunctional to assist TLS formation. Furthermore,
tumor nest expression of CD40 protein, another B cell marker, was
shown to associate with worse OS in our cohort supporting the
likelihood of these tumor-infiltrating B cells as being adverse in
raising anti-tumor immunity in SCLC. Previously, SCLC is known to
produce autoimmune antibodies that are associated with para-
neoplastic syndrome37. Therefore, reverting B cell functionality
may be another avenue to explore.
Our spatial profiling identified REST, a key regulator of a

transcription factor that controls neuronal differentiation38, as a
potential biomarker to define NE-low SCLC. REST functions by
endogenously activating the Notch pathway, resulting in an NE to

Fig. 8 Identification of REST as a potential marker for NE-low SCLC associated with immune infiltration and patient survival. a The
consensus map of the patients based on various statistical metrics decomposed by NMF. b GSVA enrichment fraction of the Cancer Hallmark
processes in each patient, with 3 NMF-clustered groups represented (top). Relationship between the 3 NMF groups and immune cell
infiltration in tumor stroma and tumor nests, respectively (middle two). Relationship between the 3 NMF groups and ASCL1, POU2F3,
NEUROD1, and REST expression (Bottom). c Relationship between the four NMF subtypes and immune cell infiltration at ROI level.
d Enrichment of transcription factors of potential regulatory genes that are differentially expressed, and clustered by patients. e Enrichment of
transcription factors of potential regulatory genes that are differentially expressed, and clustered by ROIs. f Kaplan–Meier survival curves of LS-
SCLC patients stratified by the REST expression level (at the optimal cutoff point) in the current DSP cohort and an external independent
validation cohort of 42 patients. g Spearman correlation of the expression of previously defined molecular subtyping marker genes ASCL1,
POU2F3, NEUROD1, and REST with infiltration of major immune subsets in all tumor nest ROIs.
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non-NE switch of tumor cells in a murine SCLC model and in
humans39. A recent study has also shown the regulatory role of
REST for NE to non-NE phenotype transition of SCLC that is
mediated via the YAP/Notch/REST network40. REST has also been
reported to impact metabolism, neurotransmitters, cytokines, and
recruitment of immune cells, forming an inflamed TIME41. These
are in line with our findings suggesting REST as being associated
with more active immune/inflammation TIME and longer survival
in SCLC and this was further validated by an external cohort29.
Mechanistically, our spatial transcriptional data indicate its
association with multiple immunomodulation pathways such as
interferon production, interleukin response, and other inflamma-
tory responses. Further, positive correlations of REST expression
with multiple immune cells were observed based on spatial
transcriptomic data as well as external RNA-seq data29,31.
Interestingly, these were not found with previously reported
subtyping markers, including ASCL1, NEUROD1, and POU2F3,
suggesting its role as a superior biomarker for NE-low SCLC
patient stratification and warranting future validation with
independent cohorts.
Lastly, our study has several limitations. First, although our

sample size is relatively large to establish a comprehensive ROI-
directed SPT profiling of SCLC, it still remains small to conclude on
certain aspects with statistical significance. Future studies on
larger cohorts will be required to validate some important
findings. Second, despite being carefully selected, the TMAs only
represent a small portion of each SCLC tumor, a drawback that
may underrepresent or overrepresent some of our findings,
although multiple external validations were in place. Lastly, the
ROI-based spatial profiling was incapable of reaching a true spatial
single-cell level, impeding us from finding a mapping of cell
fractions and their related mechanisms. Single-cell spatial analysis
is indeed required to cross-validate some such as biomarker-
specific cell types in future studies. Nevertheless, our SPT profiling
at a sub-histological scale certainly made the progression of SCLC
by uncovering unique immune features mapped to specific
regions of SCLC, leading to some novel clues to be followed in
the future. To harness specific cell types within the TIME may
potentiate novel therapeutic strategies to be implemented and
those include reverting B cell functionality, leveraging on innate
immune system to facilitate the transition from innate immune
response to adaptive immune response to improve clinical
efficacy. In addition, the discovery of REST as a novel and
potential biomarker to define NE-low patients may lead to
biomarker-stratified clinical regimes such as ICIs.

MATERIALS AND METHODS
Patient cohorts and specimens
This study was approved by the institutional review board of the Zhejiang
Cancer Hospital. 19 fresh samples (primary tumors, metastases, and
PBMCs) from three patients with SCLC and two patients with LCNEC were
obtained for scRNA-seq using 10x Chrominium technology. Meanwhile,
FFPE specimens of 16 SCLC tumors and 4 para-tumor lung tissues were
collected for 10x Flex scRNA-seq. The DSP study cohort comprised 44
individuals with LS-SCLC who underwent surgical removal. Sample
collection was approved by the institutional review board of the Zhejiang
Cancer Hospital with written informed consent from all patients included
in the study. Clinical data including age, gender, smoking history, tumor
stage, treatment history, and information on samples of all patients were
reported in Supplementary Table S1.
All tumor samples were pathologically evaluated by two independent

expert pathologists who inspected the histomorphology based on
hematoxylin and eosin (H&E) and IHC staining of TTF-1, Sy, CgA, and
CD56. H&E and IHC images of 10 cases of SCLC and 2 cases of LCNEC were
shown in Supplementary Fig. S9. The remaining FFPE tissues were used to
generate TMAs at 5-μm thickness. TMAs used for downstream analysis
were reviewed by a senior clinical pathologist using H&E staining to ensure
that representatives of the tumor, stroma, and peri-tumor were retained for
individual cores. For each patient, three independent cores representing

the tumor, adjacent stroma, and distal peri-tumor (1.5 mm in diameter)
were chosen, yielding a total of 132 cores for IHC and high-plex spatial
profiling.

Immune marker quantification in SCLC patients
Primary antibodies against human CD8 (Clone 4B11, Cat# PA0183), CD4
(Clone 4B12, Cat# PA0427), and CD3 (Clone LN10, Cat# PA0553) were
purchased from Leica (Leica Biosystems, Newcastle, UK). Antibody staining
was visualized using the recommended BondTM Polymer Refine Detection
kit (Leica Biosystems). PD-L1 IHC staining was performed using a 22C3
pharmDx kit (Cat# SK006; Dako Inc.). All primary antibodies were prepared
and used according to the manufacturers’ instructions. Positive PD-L1, CD3,
CD4, and CD8 staining was defined as any distinct and complete linear cell
membrane staining, with or without plasma staining. The median levels for
CD3, CD4, and CD8 were set as the cutoff values in the subsequent survival
analyses.

Immunofluorescence staining and screening of tissue slides
Slides were loaded onto glass slide holders and dewaxed with gradient of
xylene and ethanol for 10–20 s each. Slides were washed with running tap
water and then transferred to pre-warmed water (94–96 °C) containing an
antigen retrieval solution (EDTA, pH = 9.0). The slides were then washed
again under running water. Target antibodies were added at appropriate
dilutions and time (1:50, 1:100, 1:200, etc.) for immunostaining. After PBS
wash, secondary antibodies (2 μg/mL each) were added to the sections.
Control experiments were conducted to ensure there was no cross-
reactivity between antibodies.

SPT analysis using digital spatial profiler
In general, TMA slides were deparaffinized with xylene and rehydrated in
gradient concentrations of ethanol. Antigens were heat-retrieved either by
ethylene diamine tetra-acetic acid (Tris-EDTA, pH 9.0) for RNA profiling, or
citrate buffer for protein profiling. For RNA profiling, tissues were pre-
digested with protease K (Thermo Scientific) to allow efficient RNA
exposure prior to probe hybridization of over 18,000 genes in the WTA
panel (NanoString). For protein detection, tissues were immediately
blocked and incubated with 60 panelized detection antibodies. Both
workflows included a morphological staining procedure using a cocktail of
fluorescently labeled antibodies targeting pan-CK for tumor cells, CD45 for
immune cells, and CD3 for T cells. Slides were then scanned on the DSP
system, generating tri-colored images to guide ROI selection within the
cores. One or two ROIs containing more than 100 cells were selected for
each core. The cellular contents of each ROI were assessed and annotated
as tumor-enriched, immune stroma, or peritumoral region under
pathological assistance. Following ROI selection, photocleavable oligonu-
cleotides (barcodes) for individual targets were UV-cleaved, collected, and
quantified using either next-generation sequencing (Illumina NovaSeq
6000) or a nCounter system (NanoString) for RNAs and proteins,
respectively. The generated raw data were subsequently demultiplexed
on the DSP system to generate a count matrix for downstream analysis.

DSP-WTA data quality control and normalization
The limit of detection was set as the geometric mean of the negative
probes for each ROI according to manufacturer’s recommendations. Genes
with counts below the detection threshold in each ROI were omitted from
further analysis. Quantile analysis (Q3 norm) was used to normalize the
data, and the limma package was used to eliminate the batch effect.

DSP protein quality control and normalization
The digital counts of antibodies were divided by the geometric mean of
the three IgG negative control antibodies on a per-ROI basis to establish
the signal-to-noise ratio (SNR) as described below.

SNR ¼ Input=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MsIgG1 �MsIgG2a � RbIgGð Þ3
p

Antibodies in all ROIs below an SNR of one were considered lower than
normal condition. Six normalization approaches were performed and
cross-compared. Protein signals between ROIs were normalized using the
quantile. Sample phenotypic groups were visualized using classical (multi-
dimensional scaling) plot. The homogeneity and heterogeneity of samples
from the same patient were visualized using boxplots. Analyses were
performed using R (version 4.2.0) and RStudio (version 1.3.1093).
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Differential gene expression and functional enrichment of
DSP-WTA data
WTA expression profiles were analyzed using the limma package.
Downstream enrichment analysis was performed using GO
(a community-based bioinformatics resource) and Kyoto Encyclopedia of
Genes and Genomes (KEGG, an integrated database resource for the
biological interpretation of multi-omics data; ClusterProfiler (R package)
and ClueGO (CytoSCAPE plug-in) were used to examine GO and KEGG
pathway enrichment.

Spatial deconvolution of DSP-WTA data
Lineage estimation and quantitation of immune cells in each ROI were
performed using the default SpatialDecon and Cell2location-WTA package
optimized for DSP data42. For SpaitlalDecon-based cell deconvolution,
reference cell type signature matrix was generated using snRNA-seq from
SCLC patients published by Chan JM et al. as ref. 23. Patients treated with
chemotherapy and immunotherapy were purposely excluded from the
study. Raw WTA count matrix with relevant cell counts (determined by
nuclei) was used as input data.

Inferring immune CCI using DSP-WTA data
The Cell2cell package was used to compute CCIs43. Human LR pairs and
the SCLC immune cell scRNA-seq expression matrix were used as input
data. The CCI score was defined as the percentage of ligands produced by
one cell that interacts with cognate receptors in another cell.

LR correlation across ROIs calculated using WTA data
Known LR pairs were obtained from CellPhoneDB v2.0, and correlations
between potential LR pairs were quantified using Spearman rank
correlation between paired segments within the same ROI type and
across all ROIs with the stated pairs. Statistical significance was set at
P < 0.05.

Collection of NE lung cancer samples and preparation of
single-cell suspensions
Primary tumors, metastatic lymph nodes, metastatic pleural effusions,
PBMCs, liver metastatic tissue, and para-cancerous controls from three
SCLC and two LCNEC patients were used. All samples were obtained
during surgical biopsies, digested, and physically dissociated into single-
cell suspensions with cell viability over 85% as a passing criterion for
downstream scRNA-seq analysis. The samples were cryopreserved as
single-cell suspensions in RPMI medium containing 20% fetal bovine
serum and 10% dimethyl sulfoxide. The single-cell suspension used for
scRNA-seq was washed twice with PBS containing 0.04% BSA, and the final
cell concentration was adjusted to ~1000 cells/μL. PBMCs were then sorted
using a flow cytometry sorter to separate immune (CD45+) and non-
immune cells (CD45–).

Single-cell RNA library construction and sequencing
Sorted cellular proportions (CD45+ and CD45–) were loaded to 10x
Chrominium, respectively. A pool of ~750,000 barcodes is sampled
separately to index each cell’s transcriptome. It is done by partitioning
thousands of cells into nanoliter-scale Gel Beads-in-emulsion (GEMs),
where all generated cDNAs share a common 10x barcode. Libraries were
generated and sequenced and 10x barcodes were used to associate
individual reads back to the individual partitions (Shanghai Genechem
Co., Ltd).

10x Flex data preprocessing, batch effect removal, and cell
type annotation
The Illumina Hiseq PE150 readout was processed by the cellranger (10x
Genomics). The Scanpy was employed for the cell filtering, normalization,
clustering, and subsequent analysis. Specifically, the mitochondria
percentage was jammed at 20%, the gene number was selected between
500 to 7000, and the gene was recognized as highly confidential with the
observation in at least 10 cells. In current analysis, from 16 patients with
SCLC and 4 SCLC para-cancerous tissue samples, we obtained 189,717
cells, after filtering, 150,252 cells remained. The cells were normalized, and
the highly variable genes were selected. For multiple samples, the batch
effect was removed by the BBKNN algorithm. The UMAP was employed for
visualization, and the Louvain/Leiden with optimal resolution was used for

clustering. The cell type annotation was initially given by CellTypist with
immune cells and human lung cell atlas as references. The CellTypist
results were manually checked with known marker genes retrospectively.

NMF-based cluster identification
NMF algorithm was used to analyze the genes selected with the following
criteria: 1) gene expression bimodal index > 1.5, 2) mean expression value
> 25th percentile, and 3) standard deviation of expression value > 50th
percentile. The cophenetic correlation coefficient was used to select the
optimal cluster number for subsequent analysis. For SCLC samples,
molecular subtype assignment was defined by the highest expression of
three known transcription factors (ASCL1, NEUROD1, and POU2F3).

Cell type annotation and pseudo-time inferring using scRNA-
seq data
Preprocessed data were subject to integration, normalization and
clustering using the Seurat package (v4.4.0). The dimensional reduction
was performed using unsupervised UMAP considering the top 10
computed principal components with a resolution set to 1.2. The number
of principal components used in the UMAP cluster was determined by
taking the standard deviations of the top 20 principal components and
running a jackstraw analysis to quantify the P value distributions44. Cluster
marker genes and DEGs were identified using Wilcoxon rank-sum test. The
differential expression between clusters applied a threshold of 0.25 for
log2-fold change and a filter of minimum percentage of cells in a cluster
greater than 25% as standards. Differentially expressed marker genes
between clusters were identified by comparing significantly upregulated
genes, defined as those with adjusted P < 0.05, and unique, non-shared
genes between clusters.
Annotated cell types were obtained from the Satija lab PBMC dataset45,

which was taken as the anchor reference Anchors searched between the
reference and our query sets. Cell-type labels were then transferred from
the reference set to the query set. Cell trajectory and pseudo-time analyses
were performed using the PAGA algorithm in the Monocle R package
(v2.8.0) and the reverse-graph embedding machine learning algorithm46.

Identification of transcription factor regulators
A PPI network of DEGs was established using the STRING database (http://
string-db.org) and visualized using Cytoscape, an open-source bioinfor-
matics and graphic interface. The Cytoscape plug-in iRegulon47 was used
to analyze transcription factors that regulate the hub genes. Transcription
factor information was obtained from databases such as Transfac, Jaspar,
Encode, Swissregulon, and Homer, which use genome-wide ranking and
recovery to detect enriched transcription factor motifs and optimal sets of
their direct targets. The cutoff criteria were: enrichment score threshold=
3.0, ROC threshold for AUC calculation= 0.03, rank threshold= 5000,
minimum identity between orthologous genes= 0, false discovery rate
(FDR)= 0.001, and normalized enrichment score (NES) > 3.

Public data acquisition
RNA-seq and clinical data from 99 SCLC patients29 and patients with LUAD
(TCGA) cohort were used. In SCLC cohort, 86 RNA-seq samples were
obtained. Among them, 79 samples were tumor (purity > 70%), and
7 samples were para-tumor samples. The fragments per kilobase of exon
model per million mapped fragments data were normalized, and the batch
effect was removed. SCLC cell line metabolomic and proteomic data were
obtained from the depmap project (https://depmap.org/). The dataset
used for Chen, Y. et al.’s study was also analyzed to study the gene
expression correlation21.

Bulk-seq data integration and immune cell deconvolution
Processed gene expression data were scaled and normalized using the
limma package in R (version 3.5.2). To quantify the abundance of immune
cell infiltration, we employed TAPE48, an accurate cell-type deconvolution
and gene expression analysis tool. The single-cell references were used as
above. The model was trained with a batch size of 128 for 128 epochs.

10x Flex scRNA-seq from the FFPE achieved SCLC patient
samples
FFPE specimens of 16 SCLC tumors and 4 para-tumor lung tissues from 16
patients were subjected to 10x Flex scRNA-seq as previously described49. In
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brief, two 25-µm FFPE sections from each specimen were obtained with a
manual rotary slicer (HistoCore BIOCUT, Leica). Paraffin was removed by
xylene and gradient ethanol. The tissue was then dissociated with a
dissociation enzyme and pestle (10x Genomics). The human probe set for
the 10x Genomics single-cell gene expression flex fixed RNA profiling assay
was used to probe the targeted protein-coding genes. The Chromium was
used to construct GEMs for sequencing pools (experiments were
conducted by Cosmos Wisdom Biotech, Hangzhou, China).

Cell lines, REST-pCDH vector construction, overexpression,
and western blotting assay
All cell lines were sourced from ATCC. The cell lines were cultured in
RPMI1640 supplemented with 10% fetal bovine serum (Gibco) and 1%
penicillin/streptomycin. The cultures were kept at 37 °C with 5% CO2. For
transient overexpression, REST cDNA was inserted into pCDH vector,
cloned and purified REST-pCDH was verified by sequencing.
SDS-PAGE was used to assess REST-related protein work. In brief,

membranes were blocked in 5% milk or 3% BSA, and followed by primary
antibody incubation overnight at 4 °C. Membranes were then incubated for
2 h at room temperature with the HRP-conjugated secondary antibody
(Abcam) and developed with an HRP peroxide reagent (Abcam).

Statistical analysis and reproducibility
No statistical method was used to determine the sample size for power
analysis. Unless stated otherwise, P values of 0.05 were deemed as a
statistical significance cutoff. FDR was used for multiple correction
adjustment, and 0.05 was chosen as a cutoff. For comparison between
unpaired data groups, Kruskal walls and Wilcoxon were used, treating data
as with non-normality with unequal variance.
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