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 41 

Abstract 42 

High-plex proteomic technologies have made substantial contributions to mechanism studies 43 

and biomarker discovery in complex diseases, particularly cancer. Despite technological 44 

advancements, inherent limitations in individual proteomic approaches persist, impeding the 45 

achievement of comprehensive quantitative insights into the proteome. In this study, we 46 

employed two widely used proteomic technologies, Mass Spectrometry (MS) and Reverse 47 

Phase Protein Array (RPPA) to analyze identical samples, aiming to systematically assess the 48 

outcomes and performance of the different technologies. Additionally, we sought to establish 49 

an integrated workflow by combining these two proteomic approaches to augment the 50 

coverage of protein targets for discovery purposes. We used fresh frozen tissue samples from 51 

triple-negative breast cancer (TNBC) and cell line samples to evaluate both technologies and 52 

implement this dual-proteomic strategy. Using a single-step protein denaturation and 53 

extraction protocol, protein samples were subjected to reverse phase chromatography (LC) 54 

followed by electrospray ionization (ESI)-mediated MS/MS for proteomic profiling. 55 

Concurrently, identical sample aliquots were analyzed by RPPA for profiling of over 300 56 

proteins and phosphoproteins that are in key signaling pathways or druggable targets in 57 

cancer. Both proteomic methods demonstrated the expected ability to differentiate samples by 58 

groups, revealing distinct proteomic patterns under various experimental conditions, albeit 59 

with minimal overlap in identified targets. Mechanism-based analysis uncovered divergent 60 

biological processes identified with the two proteomic technologies, capitalizing on their 61 

complementary exploratory potential. 62 

Keywords: Label-free mass spectrometry, Reverse phase protein array, Liquid 63 

chromatography, Triple-negative breast cancer, Fresh frozen tissue,  64 

 65 

Introduction 66 

Proteins are functional biomolecules to directly dictate almost every biological process and 67 

thus are being the focus of biomarker discovery in translational medicine [1, 2]. Quantitative 68 

proteomics, especially high-plex proteomic technologies have become the front-line 69 

analytical approach in discovering novel protein biomarkers in many disease settings [3, 4]. 70 

Amongst those, mass spectrometry (MS)-based methods have emerged as a key strategy of 71 

choice for qualitative and quantitative detection of proteins in biological samples. In the 72 

preceding decade, MS has become the dominant player in this field, owing to its discovery 73 

capability theoretically without a prior knowledge of the analytes. Nowadays, analytical 74 

methods utilizing high performance liquid chromatography (HPLC) for peptide separation 75 

coupled with electrospray ionization (ESI) and tandem MS/MS spectrum-based detection 76 

widely adopted for global protein identification, while quantification could be either 77 

label-based or label-free methods [5]. Efforts have also been made to improve the detection 78 
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sensitivity and quantification accuracy and those are mainly focused on three technical 79 

dimensions. 1. To increase the protein detectability by optimizing the protein recovery and 80 

peptide digestion efficiency in sample preparation prior to liquid chromatography. 2. To 81 

incorporate orthogonal separation techniques including the ion mobility technology in the 82 

front-end of the mass spectrometer. improve the analytical robustness of the front-end mass 83 

analyzer. 3. To advance mass spectrum scanning modes and data analysis software to improve 84 

proteome coverage per unit time and robustness of protein quantification. [6, 7]. While 85 

MS-based discovery proteomics hold central promises in biomarker profiling, other 86 

techniques also exist and particularly in the field of cancer biology, reverse phase protein 87 

array (RPPA) has been highlighted as an excellent experimental approach for cancer-related 88 

biomarker profiling [8, 9]. As originally designed to address signaling pathway alteration in 89 

cancer, RPPA is tactically suited for targeted proteomics in a high-throughput format. Due to 90 

the highly sensitive antibody-based detection and amplification method, RPPA focuses on 91 

proteins in key signaling pathways, transcription regulation and their modified proteoforms 92 

that are low protein expressors but major functional determinants in pharmacodynamics and 93 

druggable targets during oncogenic processes[10-12]. Nevertheless, RPPA is confined by the 94 

availability of high-quality antibodies as well as its semi-automated workflow and in a typical 95 

experimental assay, panelized detectable targets ranging from 50 up to 450 [13-15].  96 

Clinical tissue samples bearing invaluable biological information are most commonly used 97 

materials to address oncogenic questions such like the molecular alterations arising from 98 

cancerous origins, different progression stages, primary and metastatic sites or 99 

treatment/response associated phenotypic effect. Amongst a wide array of sample types, fresh 100 

frozen (FF) tissues are still the preferred material of choice for high-plex discovery 101 

proteomics due to its biological integrity preserved and therefore are widely used in 102 

tissue-based proteomic profiling such as MS or RPPA [16-19]. In MS experiments, sample 103 

preparation is an essential part in proteomic characterization of clinical tissue samples. Lysing 104 

and extraction of proteins from clinical samples require different organic solvents and 105 

detergents with additional tissue disruption and homogenization processes including 106 

sonication and physical disruption [20]. Although, organic solvent-based extractions (such as 107 

2,2,2-Trifluoroethanol-based method) were reported in application of FF-based 108 

proteogenomic discovery, traditional detergent-based extraction methods have long been 109 

regarded as the gold-standard approach in tissue proteomics setting [21, 22]. Denaturants 110 

including ionic and non-ionic agents such as urea, guanidine HCl, SDS, Triton X-100 and 111 

NP-40 are efficient lysing reagents to disrupt tissue and solubilize protein complexes 112 

including membrane proteins. Those detergents are typically removed using different 113 

purification techniques to allow more efficient digestion and prevent adverse chemical 114 

deposition in MS instruments[23, 24]. FF tissues are also favored clinical resources in RPPA 115 

experimental settings and this was proven in large -scale pan-cancer multi-omics profiling 116 

primarily featured by the cancer genome atlas (TCGA) project. FF sample preservation 117 

processes developed for RPPA were described. Currently, generally accepted methods use 118 

denaturing agents such as urea, thiourea, SDS and Triton X-100 all of which have shown 119 

decent compatibility with FF samples [13, 25, 26]. Of further technical interest, there were 120 

also studies reporting on a single lysing procedure compatible for both MS and RPPA 121 

mediated protein profiling, however, this work assessed the quantitative MS profiling using 122 
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difference in gel electrophoresis (DIGE) for protein separation/selection and followed by 123 

matrix absorbed laser dissociation ionization mass spectrometry (MALDI-MS) rather than 124 

liquid chromatography-based MS (LC-MS)[27].  125 

 126 

In addition, from cancer biomarker discovery perspective, bioinformatic analysis on cell line 127 

models testing the predictive power for drug sensitive evaluation revealed the added benefit 128 

of incorporating both MS and RPPA strategies in biomarker profiling. In this study, using 129 

GI50 values as responsive variables, multi-omics data at genomic, transcriptomic and 130 

proteomic levels derived from NCI-60 cell lines with drug response measures of 47 131 

FDA-approved cytotoxic and targeted agents were evaluated [28]. Main conclusions have 132 

been drawn where it showed significantly increased predictive power by inclusion of both MS 133 

and RPPA data and both datasets provided complementary information contributing towards 134 

the response prediction[28]. These findings point at the potential of cross-platform application 135 

in aid of protein biomarker discovery and mechanistic elucidation, however apart from the 136 

abovementioned single lysis solution used in tissue protein extraction followed by RPPA and 137 

DIGE workflow, there is yet no such experimental approach established compatible for both 138 

LC-MS and RPPA.  139 

Proteomic landscapes in multiple cancers have been established systematically through RPPA 140 

(TCGA) and MS (clinical proteomic tumor analysis consortium CPTAC). In breast cancer 141 

(BC), comprehensive proteogenomic profiling has led to deeper understanding of proteomic 142 

driven molecular alteration linking to their genetic traits and plausible therapeutic targets [19, 143 

29]. In the current study, we used primary both FF tissues from triple negative breast cancer 144 

(TNBC) as well as in vitro cell lines (293T, MKN7 and OVCAR3) as models to assess an 145 

in-house developed all-in-one workflow for joint high-plex proteomic profiling using both 146 

LC-MS and RPPA and compared their analytical strength and weakness in addressing 147 

biological questions respectively. This work set as a preliminary work that may be shared to 148 

the broad community for mechanistic exploration and biomarker profiling.  149 

 150 

Materials and methods  151 

Clinical sample acquisition and characteristics 152 

The study was approved by the Peking University Cancer Hospital ethics committee 153 

(reference number 2020KT113). Tumor and paired normal tissues were obtained from 154 

surgical specimens of seven patients at Peking University Cancer Hospital. These patients 155 

were diagnosed by core needle biopsy and had not received any systematic therapy before 156 

surgery. The samples were obtained immediately after the surgery by a pathologist. The 157 

paired normal tissue was obtained at least 2cm away from the tumor margin. The detailed 158 

clinicopathological information of the included patients is listed in Supplementary Table 1.  159 

Lysis buffer composition 160 

The lysis buffer was prepared to contain the following components: 50 mM HEPES (pH 7.4), 161 

150 mM NaCl, 1 mM EGTA, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, 1.5 162 
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mM MgCl2, 1% Triton X-100, 10% glycerol, and 1 mM sodium orthovanadate. Additionally, 163 

proteinase inhibitor (Roche 05056489001) and phosphatase inhibitor (Roche 04906837001) 164 

were added following the manufacturer’s instructions. The resulting lysis buffer was stored at 165 

-20� and thawed on ice prior to use. 166 

Clinical sample preparation and protein quantification for dual proteomic profiling by 167 

LC-MS and RPPA 168 

Fresh frozen TNBC tissues and paired normal tissues were semi-thawed and weighted for 169 

subsequent processing in grinding tubes. For each sample, ice-cold lysis buffer was added at a 170 

ratio of 1:20 (sample/buffer). Depending on available materials, we used 45-80 mg of each 171 

sample to allow parallel LC-MS and RPPA profiling. For tissue disruption, 6 ceramic beads 172 

were added to each sample grinding tube and loaded into the pre-cold chamber (-5�) of the 173 

beads ruptor (OMIN bead ruptor 24 Elite). Tissues were disrupted with the following settings: 174 

2 cycles, each lasting 30 seconds with a 10-second cooling time interval. Homogenized 175 

samples were then subjected to centrifugation (14,000 rpm) for 15 minutes at 4�, and the 176 

resulting supernatants were retained for protein quantification using a standard BCA protocol 177 

(Pierce BCA kit 23225) and a microplate reader (Biotek, Epoch2).  178 

 179 

Cell line sample preparation 180 

Cell lines (293T, MKN7 and OVCAR3) were obtained from ATCC. All cell lines were 181 

verified by Satellite Tandem Repeat (STR) to ensure authenticity. Cells were cultured at 37� 182 

with a 5% CO2 supply. For 293T cells, serum starvation was conducted in serum-depleted 183 

DMEM medium for 24 hours before stimulation with 10% fetal bovine serum (FBS). Cells 184 

were harvested 30 minutes post-treatment. MKN7 and OVCAR3 cells were cultured in 185 

complete medium (RPMI1640 with 10-20% FBS) and harvested when cells reached over 186 

80%-90% confluence.  187 

Label-free Liquid chromatography mass spectrometry (LC-MS) 188 

Sample purification 189 

Solubilized protein extracts were purified by acetone precipitation. Specifically, 80 μl of 190 

precooled acetone was added to 50 μg of each sample and placed in -20� overnight. 191 

Precipitated protein was pelleted by centrifugation at 16,000 x g for 10 mins. Supernatants 192 

containing detergent and salt were discarded. Protein pellets were washed with cold acetone 3 193 

times, then dried for 10 mins at room temperature (RT). Samples were resolubilized in a 194 

buffer made of 8M urea and 50 mM ammonium bicarbonate (AMBIC), pH 7.8, and sonicated. 195 

Protein disulfide bonds were reduced by 5 mM of dithiothreitol at 30� for 1 hour and 196 

alkylated by freshly made 10 mM of iodoacetamide at RT for 30 mins in the dark. After urea 197 

was diluted in 4 x 50 mM AMBIC buffer, MS grade trypsin (Promega) was applied to a final 198 

protease-to-protein ratio of 1:25 (w/w). After overnight digestion at RT, samples were 199 

acidified by trifluoroacetic acid (TFA) and further purified by C18 stage tips. Each C18 tip 200 

was equilibrated by passing 50 μl of 0.1% TFA and 80% acetonitrile (ACN) solvent. Samples 201 

were then loaded to the C18 tips and washed by 55 μl of 0.1% TFA twice. Finally, peptides 202 
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were eluted off the C18 tips by 10 μl of 0.1% TFA and 80% ACN solvent twice and dried in a 203 

vacuum concentrator.  204 

LC-MS/MS analysis  205 

Purified samples were resuspended in 0.1% formic acid (FA), and loaded onto the 206 

autosampler of Ultimate 3000 UPLC system (Thermo Fisher Scientific). Each injection 207 

contained ∼ 250 ng of peptides, which were separated by an in-house made analytical column 208 

(30 cm, 100 µm ID, 1.9 µm C18). LC mobile phases were 0.1% FA in water as A and 0.1% 209 

FA in 80% acetonitrile as B. LC flow rate was set at 300 nL/min. For the data-dependent 210 

acquisition (DDA) method, LC gradient and MS parameters were set as follows: mobile 211 

phase B started at 4%, increased to 15% within 2 min, and then gradually raised to 37.5% 212 

within 80 mins. MS1 spectra were acquired at an MS scan range of 300-1500 m/z, an orbitrap 213 

resolution at 60K (200 m/z), a maximum injection time at 30 ms, and a normalized AGC 214 

target at 250%. MS2 spectra were collected at a scan range of 200-1400 m/z, an isolation 215 

window of 1.6, an orbitrap resolution at 15K (200m/z), a normalized HCD energy at 27 %, a 216 

maximum injection time of 22 ms, a normalized AGC target at 100%. For data-independent 217 

acquisition (DIA), parameters were set as follows: on the LC, Mobile B started at 8% and 218 

increased to 37% within 120 min. The full MS was carried out in the Orbitrap by scanning 219 

m/z 350-1,150 at a resolution of 120K (200 m/z), with an AGC target at 1E6 and a maximum 220 

injection time at 50 ms. One full MS event followed by 30 MS/MS windows in one cycle. 221 

The precursors were fragmented by HCD at normalized collision energy at 32%. The MS/MS 222 

was carried out in the Orbitrap by scanning m/z 200-1,600 at a resolution of 30K (m/z 200), 223 

with an AGC target at 1E6 and a max injection time of 54 ms. Two technical runs were 224 

generated for both TNBC and control samples with a randomized order to minimize the 225 

impact of LC-MS/MS system instability on the measurement. Three biological replicates 226 

were analyzed for cell samples. 227 

MS data analysis  228 

Collected raw files from the DDA method were analyzed by Proteome Discoverer 2.4 229 

software (Thermo Fisher Scientific). Searching was done by matching spectra to a UniProt 230 

homo sapiens database (downloaded 2021/03). The parameters were set as in the following: 231 

protease was defined as trypsin, maximum missed cleavage was 2, minimum peptide length 232 

was 6, max peptide length was 44, precursor mass tolerance was 10 ppm, fragment mass 233 

tolerance was 0.02 Da, dynamic modification was set as oxidation at methionine and 234 

acetylation at protein N-terminus, static modification was carbamidomethylation at cysteine. 235 

Percolator was employed and the filter parameter was set at 1 % false discovery rate (FDR) 236 

both at peptide and protein level. Label-free quantitation was based on extracted peak areas of 237 

peptides with minora feature mapper, which could match features between runs. Unique and 238 

razor peptides were used for quantification. Raw files collected by the DIA method were 239 

analyzed by Spectronaut v17 (Biognosys) against human fasta file (Uniprot, UP000005640) 240 

with the following settings: Enzyme was Trypsin/P. Two missed cleavages were allowed. 241 

Both peptide and protein false discovery rate (FDR) were set at 1%. Carbamidomethylation at 242 

Cysteine was set as a fixed modification. Acetyl at Protein N-terminus and oxidation at 243 

Methionine were defined as variable modifications. Normalization was based on the total 244 
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peptide amount. Protein abundance was calculated on the top 3 most abundant peptides. For 245 

MS missing data handling, we applied NAguideR package [30].  246 

Reverse phase protein array 247 

Sample processing and RPPA workflow 248 

Reverse phase protein array (RPPA) was conducted following this procedure: Protein lysates 249 

were pre-mixed with sample dilution buffer (50% glycerol, 4XSDS buffer with 6ml of 250 

beta-mercaptoethanol) to achieve a final concentration of 1.5 mg/ml. 251 

Concentration-normalized samples were then subjected to a 2-fold dilution in sample dilution 252 

buffer (a mixture of lysis buffer, 50% glycerol, and 4X SDS buffer with 6 ml of 253 

beta-mercaptoethanol at a ratio of 3:4:1). Five serial dilutions (1, 1/2, 1/4, 1/8, 1/16) were 254 

performed using automated liquid handling workstations (Tecan Fluent series). The prepared 255 

samples in 384-well plates (low-binding Molecular Devices) were deposited onto 256 

nitrocellulose-coated glass slides (Gracelab ONCYTE superNOVA) via a solid pin contact 257 

printer (Quanterix 2470 Arrayer). On-slide controls, including cell lines with or without 258 

treatment, and a mixture of cell lines and tonsil tissue lysate, were used for staining quality 259 

controls (QC) and quantitative QC measures. A similar experimental setup can be referenced 260 

in the literature [13]. In total, about 400 identical slides were prepared. 261 

Each slide was then subjected to colorimetric signal quantification using one of a panel of 305 262 

antibodies validated in-house, including 227 targeting total proteins and 78 targeting 263 

phosphoproteins or other PTMs (Supplementary S1). Slides were first blocked with Re-Blot 264 

(Millipore) at RT, followed by blocking with I-block (Fisher), and antigen retrieval with 265 

hydrogen peroxide (Fisher). The slides were then sequentially blocked with avidin, biotin, and 266 

protein block (DAKO) before undergoing primary antibody incubation for 1 hour at RT. 267 

Secondary antibodies (DAKO) against rabbit or mouse were then applied, followed by 268 

Tyramide Signal Amplification (TSA, Akoya) and DAB colorimetric visualization (DAKO). 269 

All staining processes were conducted automatically on DAKO Link 48 Autostainer (Agilent). 270 

Stained slides were scanned on a high-throughput slide scanner at a scanning resolution of 10 271 

micron (Huron LE120), and images were used for downstream processing.  272 

 273 

RPPA data processing and analysis  274 

The digital transformation of images was performed using MicroVigene software (version 275 

5.6.0.8). The output text (txt) and image (tiff) files underwent SuperCurve fitting with the R 276 

package SuperCurve. This step aimed to generate expression data (rawlog2 files) and quality 277 

control (QC) data for each slide [31]. Correction factors (CF) were calculated to evaluate 278 

sample outliers intra- and inter-experimentally. For rawlog2 data normalization (loading 279 

adjustment), each column (antibody) was median subtracted column-wise and then each row 280 

(sample) was median subtracted row-wise. This generated a normalized log2 file, which was 281 

further squared to generate a linear dataset (Normlinear) (Supplementary S2). All these data 282 

sets were processed for downstream quantitative comparison and graphical visualization. 283 

 284 
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Data analysis 285 

All data generated from MS and RPPA profiling were processed in R (Version-4.1.0). Data 286 

cleaning, clustering, differential expression analysis, correlation analysis, and overlapping 287 

analysis were performed and plotted mainly using R packages (dplyr, ggplot2, pheatmap, 288 

clusterProfiler, limma, VeenDiagram). External RPPA proteomic data (batch normalized 289 

level 4 data）and corresponding metadata for TNBC were downloaded from Genomic Data 290 

Commons (GDC data portal: https://portal.gdc.cancer.gov/). TNBC MS data (QC-passed and 291 

normalized counts) and corresponding metadata were downloaded from Proteomic Data 292 

Commons (PDC data portal: https://proteomic.datacommons.cancer.gov/pdc/). All 293 

downloaded files are in Supplementary S3. For correlation analysis, log-transformed MS data 294 

were used for plotting, and for RPPA, normalized log2 (normlog2) data were used 295 

accordingly. The Wilcoxon ranked sum test was employed for the differential expression 296 

analysis of individual RPPA targets. Unless otherwise mentioned, a p-value of 0.05 was 297 

consistently used throughout the study as the threshold for statistical significance. 298 

 299 

Results  300 

Concurrent proteomic profiling of TNBC tissue samples using label-free MS and RPPA 301 

To assess and compare the outcomes and performance of the two prevalent proteomic 302 

technologies, Mass Spectrometry (MS) and Reverse Phase Protein Array (RPPA), we first 303 

established a protein extraction workflow from patient tissue samples, enabling downstream 304 

quantitative analysis using both approaches. Firstly, we evaluated the protein yield from 305 

freshly frozen (FF) tissues using standard BCA. With starting FF materials ranging from 306 

45-80 mg per sample, our approach resulted in a satisfactory protein yield in the range of 307 

27-115 µg total protein per mg of tissue (Supplementary S4). About 40 µg of total protein in 308 

lysate from each sample was used for RPPA, and the rest protein for MS. For the LC-MS 309 

experiment, buffer exchange was conducted to remove salts and high concentrations of 310 

detergents that could potentially interfere with MS. Within an 80-minute LC gradient, over 311 

3,300 proteins were identified in our label-free MS/MS run (Supplementary S5). After 312 

correcting for missing values, 2,583 proteins were retained to construct an unsupervised 313 

clustering map distinguishing TNBC from paired normal tissues in a near-perfect manner, 314 

with only one TNBC5 tumor sample not grouped in the tumor cluster (Fig. 1A). In parallel, 315 

RPPA generated a targeted proteomic profiling containing 305 total protein targets including 316 

221 total proteins and 84 proteins targets including phosphoproteins and other PTMs 317 

(Supplementary S2). An unsupervised heatmap also effectively distinguishes tumor and 318 

paired normal tissues, again, with only TNBC5 tumor not grouped in the tumor cluster (Fig. 319 

1B).  320 

RPPA data exhibits better correlation with public data than MS data 321 

We then compared our MS and RPPA data with the public Clinical Proteomic Tumor 322 

Analysis Consortium (CPTAC) and the TCGA-TNBC RPPA data, respectively. For the 323 

public CPTAC MS data, 18 TNBC and 3 paired normal controls were obtained after filtering 324 

out QC-failed samples, with a total of 11,146 proteins identified. Of these, 2,365 proteins 325 
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were matched with our identified protein (2,365/2,583) in MS and were used for subsequent 326 

correlation analysis. While our MS tumor data exhibited nearly no inter-sample correlation, it 327 

showed a slightly better correlation with matched CPTAC tumor data (Pearson R2 ranging 328 

between -0.05 and 0.05) compared to our tumor data with public normal controls (R2 between 329 

-0.03 and -0.01). When comparing our normal controls with public controls or tumors, no 330 

discernible correlations or differences in correlations were observed (Fig. 1C).  331 

As for the RPPA data, 247 out of 305 proteins identified in our RPPA were matched to the 332 

public TCGA RPPA data (Supplementary file S3). In contrast to the MS data, a general trend 333 

of positive correlation was observed, with inter-normal comparison showing a better 334 

correlation (Pearson R2 ranging between 0.1 and 0.4) than inter-tumor (Pearson R2 ranging 335 

between 0.2 and 0.25). Our tumor data did not exhibit a correlation with either the public 336 

tumor or normal data, likely attributed to the heterogeneity of patient samples and the limited 337 

number of samples in the studies (Fig. 1D). 338 

MS and RPPA identifies distinct sets of differentially expressed proteins in TNBC vs 339 

peritumor tissues 340 

Since MS and RPPA identified different sets of proteins while both proteomics profiles 341 

distinguished TNBC from paired peritumor tissues effectively (Fig. 1C), we investigated the 342 

differentially expressed (DE) proteins identified by each technology, seeking to elucidate 343 

shared biological mechanisms and those exclusively identified by either MS or RPPA. Given 344 

the broader protein coverage of the MS profiling, with 2,633 quantified targets compared to 345 

the 305 proteins in RPPA, log fold-change thresholds were set to 1.5 for MS and 0.8 for 346 

RPPA to identify DE proteins at a similar percentage. As a result, 773 (29.6% of 2633) and 347 

84 (29.2% of 305) DE proteins were identified from MS and RPPA, respectively 348 

(Supplementary S6). Volcano plots illustrated differential expression patterns for MS and 349 

RPPA, highlighting top-ranked -log adjusted p-values (Fig. 2A/B).  350 

Gene ontology-based pathway enrichment analysis revealed distinct regulatory patterns 351 

between MS and RPPA. MS highlighted processes such as RNA splicing, translation 352 

regulation, and metabolic processes, while RPPA focused more on post-translational 353 

modification and cellular functions such as proliferation, adhesion, and apoptosis (Fig. 2C/D). 354 

KEGG pathway analysis further underscored the individual regulatory patterns, with MS 355 

highlighting regulation in neurodegeneration, oxidative processes, and RNA/protein synthesis. 356 

RPPA demonstrated dynamic regulation within multiple cancers and key oncogenic signaling 357 

pathways, including EGFR, HER2, mTOR, FoxO, HIF-1, and PD-1/DP-L1 (Fig. 2E/F). 358 

Overlapping proteins identified by MS and RPPA 359 

We next investigated the overlaps of proteins profiled by MS and RPPA. Since MS in this 360 

study did not identify protein phosphorylation and other post-translational modifications 361 

(PTM), only unique total proteins identified from both methods were compared. A total of 61 362 

overlapping proteins were identified (Supplementary S7), which account for 2.4% of the 363 

2,583 proteins from MS and 27.6% of 221 unique total proteins from RPPA (Fig. 3A). 364 

Among all DE proteins, 8 overlapping proteins were identified, accounting for 1% MS DE 365 

proteins and 13% of RPPA DE proteins (Fig. 3B). This partially explains the low overlap in 366 
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pathways derived from GO and KEGG enrichment analyses, wherein only 7 and 17 pathways 367 

overlapped in either enrichment profiling (Fig. 3C/D).  368 

As both MS and RPPA provided quantitative proteomic data, we then analyzed the 369 

correlation between their matched targets. Of the total 61 unique proteins matched, a dynamic 370 

range of quantitative correlation was observed across shared targets. Genes such as PAICS, 371 

COX4l1, PKM had the highest correlation (R2>0.9), while other signaling regulators, 372 

including PRS6, MAPK3, STAT3 had moderate positive correlation (Fig. 3E). 373 

Approximately 55% of proteins showed a weak to strong positive correlation (Fig.3E). A 374 

further comparison focusing on the 8 matched DE proteins showed an overall 75% (6 out of 8) 375 

relatively-strong positive correlation (Fig. 3F).  376 

RPPA reveals the key pathway activation in TBNC 377 

We then analyzed the proteomic data for EGFR and ERBB2 signaling, two critical drivers in 378 

TNBC. From our RPPA data, TNBC tumors, in comparison to paired normal samples, 379 

exhibited lower EGFR total protein levels (p<0.05) with lower phosphorylation levels at 380 

tyrosine residues 1068 (Fig. 4A). In consistent, a canonical downstream PI3K/AKT signaling 381 

was also downregulated in TNBC compared with peritumor tissues, shown by lower 382 

phosphorylation of AKT at residues threonine 308 and serine 473, the 2 major activating 383 

phosphorylation sites of the kinase, indicating that AKT was not activated in TNBC, despite 384 

elevated total AKT levels (Fig. 4B). AKT inactivation in TNBC was further demonstrated by 385 

downregulation of GSK3α/β phosphorylation, a downstream substrate of the AKT kinase (Fig. 386 

4C). Our results are consistent with the public TCGA RPPA data of the TNBC samples, 387 

which also show EGFR phosphorylation at Tyr1068 is significantly downregulated, together 388 

with lower levels of AKT phosphorylation at both Thr308 and Ser473 (Supplementary Fig. 389 

1). 390 

Notably, our RPPA data showed that ERBB2 signaling was activated in TNBC as compared 391 

to their paired normal controls, which was indicated by increased HER2 total protein and its 392 

phosphorylation on tyrosine residues 1196 (Fig. 4C). HER2 activation triggers the 393 

downstream Raf/MEK/ERK signaling cascade. Our RPPA data further showed significantly 394 

increased B-Raf phosphorylation at serine residue 445 (p<0.05) as a likely activation axis 395 

through HER2 activation, but not C-Raf (Fig. 4D).  396 

In contrast, no protein phosphorylation, which usually reflects protein activation status, can be 397 

conveniently captured in MS. Only changes of total proteins can be used to evaluate 398 

activation of signaling transductions. To compare the capacities of MS and RPPA in revealing 399 

signal transductions in TNBC, we analyzed changes of proteins identified in our MS and 400 

RPPA in KEGG pathways closely related to TNBC including EGFR, ERBB, PI3K/AKT, and 401 

mTOR pathways. As expected, while RPPA identified fewer proteins than MS, it revealed 402 

significantly more proteins that change in a variety of signal pathways (Supplementary Fig. 403 

2A, B, C, D). Taking the EGFR pathway as an example, RPPA identified 32 proteins in the 404 

pathway, while MS identified 14 proteins (Supplementary Fig. 2A). The results showed that 405 

RPPA, designed for phosphoproteins and low-expression signaling proteins especially in 406 

cancer signal transductions, offers a more detailed insight into signaling pathway changes 407 

than MS. As two complementary proteomic technologies, the targeted proteomic RPPA 408 
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excels in profiling signaling networks in diseases like cancer, while the de novo MS 409 

technology excels in revealing previously unknown mechanisms. 410 

Parallel MS and RPPA proteomic profiling of 293T cells under basal and FBS-stimulated 411 

conditions 412 

Since MS and RPPA are widely used on cell cultures in addition to tissue samples, we further 413 

assessed the outcomes and performance of these two technologies on cell line models. We 414 

first tested on 293T cells under serum starvation and FBS stimulation conditions, representing 415 

the same cells under different physiological conditions. Using the same DDA data acquisition 416 

mode in MS, we obtained 2,317 proteins from 293T cell samples. Similarly, 305 proteins 417 

including 230 total proteins and 75 phosphoproteins were obtained by RPPA from the same 418 

samples. Hierarchical clustering based on both profiling exhibited clear separations between 419 

starvation and stimulation groups (Fig. 5A, Supplementary S8).  420 

We compared the unique total proteins identified by MS and RPPA, revealing 83 overlapping 421 

proteins, which constitute 3.6% (83/2317) of MS proteins and 37.6% (83/221) of RPPA 422 

proteins (Fig. 5B). The overlapping rates are higher than those in the TNBC tissues (2.4% and 423 

27.6%), likely due to the analysis of the same cells. A total of 127 differentially expressed 424 

(DE) proteins were identified from MS, and 11 from RPPA. Interestingly, no overlap was 425 

observed among the DE proteins identified by MS and RPPA (Fig. 5B). Only about 50% of 426 

the overlapping proteins showed positive correlation (Fig. 5C). Using GO enrichment analysis, 427 

we identified distinct biological patterns associated with each technology. In MS, 428 

significantly altered proteins were prominently enriched in pathways related to protein 429 

transportation and shuttling in response to FBS stimuli (Fig. 5D, left). In contrast, RPPA, 430 

which is designed to focus on intra-cellular signaling, exhibited most altered proteins enriched 431 

in pathways associated with cell growth regulation, serine/threonine phosphorylation, TOR 432 

signaling, as well as other cellular differentiation and development processes (Fig. 5D, right). 433 

Parallel MS and RPPA proteomic profiling of different cell lines 434 

We performed MS with DDA for TNBC and 293 cells to compare with parallel RPPA. 435 

Recognizing the increasing applications of MS under the DIA scanning model, which is 436 

expected to yield more proteins than DDA with more accurate quantification, we further 437 

performed MS with DIA and RPPA on two different cell lines (gastric cancer cells MKN7 438 

and ovarian cancer cells OVCAR3). In MS with DIA, around 6,000 proteins were 439 

successfully identified and quantified, a significantly larger number compared to the proteins 440 

identified in TNBC tissue or 293T cells using MS with DDA. The same 305 proteins were 441 

identified by RPPA in the same samples. Both MS and RPPA profiling effectively 442 

differentiated between the two cell lines (Fig. 6A, Supplementary S9). 443 

The overlapping unique proteins from MS and RPPA were 2.6% (MS:151/5882) and 68.3% 444 

(RPPA:151/221), respectively. For DE proteins (under cutoffs: logFC=1 and p-value=0.05 445 

removing targets with missing values in replicates), the overlapping rates are 0.67% in MS 446 

(12/1794) and 52.2% in RPPA (12/23) (Fig. 6B). About 70% of overlapping proteins showed 447 

positive correlation (Fig. 6C), higher than that in 293T cells, likely due to a better 448 

qualification of DIA compared with DDA. Furthermore, all matched DE proteins (designated 449 
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with red dots) exhibited positive correlation, confirming their quantitative consistency (Fig. 450 

6C). Similarly, GO enrichment analysis showed distinct biological patterns associated with 451 

MS and RPPA (Fig. 6D). 452 

Collectively, these data further support the overall feasibility of our method for profiling in 453 

vitro cell lines across various biological states, and highlight the technical robustness and 454 

complementary nature of the two proteomic technologies in profiling biological samples. 455 

Discussion 456 

In this study, we employed two prevalent proteomic technologies, namely label-free LC-MS 457 

and RPPA, to establish an efficient and streamlined workflow for sample preparation to data 458 

analysis in both tissue and cell line settings. Label-free LC-MS, without requirement for 459 

specific LC-MS reagents and complex MS run setup, was assessed with both DDA or DIA to 460 

compare with RPPA in parallel. To prepare protein samples suitable for both technologies, we 461 

initially used detergent-rich and chaotropic compound-containing lysis buffer typically used 462 

in RPPA procedures to solubilize membrane and nuclear proteins. Subsequently, these protein 463 

samples underwent acetone precipitation, and the buffer was changed to meet the 464 

requirements of downstream LC-MS applications, with starting materials of 50 μg and a 465 

typical injection volume of 2 μg. 466 

From the data analysis perspective, both proteomic technologies effectively captured the 467 

differences in protein profiles between sample groups (TNBC tumor vs. peritumor normal, 468 

different cell lines, and cells under different conditions). However, they diverged in their 469 

ability to uncover distinct underlying biological mechanisms, as revealed by the results of GO 470 

and KEGG analyses. Differential expression analysis highlighted a relatively low number of 471 

overlapping targets identified through both methodologies, suggesting inherent technical 472 

characteristics associated with each method. 473 

As for LC-MS, our objective was to implement a straightforward yet rigorous run condition 474 

using a high-quality instrument, employing a single column with two technical replicates for 475 

each sample within an acceptable instrument time frame (1 hour). For tissue samples, using 476 

standard data analysis tools, 3,356 proteins were identified with 2642 being quantified with 477 

decent reproducibility, which was typical in a standard DDA LC-MS run. However, with the 478 

aid of longer gradients, tandem mass tags (TMT) or data-independent acquisition (DIA), 479 

reproducibility and detection capability may be further enhanced, as in the CPTAC analyses.  480 

In the comparison with an external database, Our MS data displayed nearly no correlation 481 

with the CPTAC data for TNBC samples. This lack of correlation could be attributed not only 482 

to the limited sample number being compared (18 TNBC samples plus 3 normal samples 483 

from the CPTAC database) but also to the distinct experimental setup. The reference studies 484 

used TMT 10-plex quantification and pre-fractionation, with a total of 110-minute 485 

LC-MS/MS gradient runs. On the other side, TNBC samples profiled through RPPA 486 

exhibited relatively better correlation and this was not only due the larger sample size being 487 

compared but also our experimental setup that was similar to the method applied in TCGA 488 

breast cancer RPPA profiling. Nevertheless, the inter-tumor sample correlation was inferior to 489 

inter-normal correlation and this was potentially due to the heterogeneity of TNBC subtype or 490 
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the genetic discrepancy across different racial background (East Asian/Chinese versus 491 

Caucasian/Africa American).  492 

In both tissue and cell lines, the quantitative comparison of shared targets between LC-MS 493 

and RPPA demonstrated various degrees of quantitative correlation. This is consistent to a 494 

previous study showing an overall 60% positive correlation between LC-MS and RPPA data 495 

[32]. RPPA, functioning akin to a high-throughput immuno dot blot assay, is more sensitive 496 

in quantifying low-abundance expressors, rendering it more reproducible for dissecting 497 

signaling transductions [8]. In contrast, LC-MS involves more intricate pre-analytical steps 498 

that may impact quantitative accuracy by measuring peptide abundance, posing a challenge 499 

when dealing with complex sample types like tissues. Regardless of these facts, more than 500 

half of the matching targets showed consistent quantitative results ensuring the robustness of 501 

our data across two platforms. 502 

Furthermore, we compared key targets in major oncogenic signaling pathways in TNBC. Our 503 

results showed down-regulation of EGFR protein and its activity compared to paired normal 504 

tissues. Previous studies utilizing either MS or RPPA for discovery proteomics demonstrated 505 

EGFR up-regulation in TNBC compared to luminal A/B and HER2+ breast cancer [19, 32]. 506 

However, whether the observed down-regulation of EGFR signaling compared with paired 507 

normal tissues is specific to the samples requires further investigation. If suitable anchoring 508 

samples become available, we could compare our RPPA data with external TCGA RPPA data 509 

for breast cancer samples using RBN-based normalization for a more comprehensive analysis 510 

[33]. RPPA profiling of the HER2 pathway revealed elevated expression and HER activity in 511 

tumor samples. This finding aligns partially with previously reported data where highly 512 

phosphorylated HER2 was found in HER2-negative breast cancer tissues and cell lines [34]. 513 

Our exploratory results also demonstrated that, in connection with HER2 activation, another 514 

canonical HER2 downstream pathway, RAF/MEK/ERK, may be triggered, primarily through 515 

B-Raf, the most potent Raf isoform. 516 

Finally, the assessment of the two parallel proteomic profiling on cell line samples further 517 

validated the combined complementary technologies. In 293T cells, while MS captured global 518 

changes at downstream of signaling pathways following serum stimulation, RPPA was 519 

capable of detecting subtle and transient pathway alterations intracellularly that directly link 520 

with growth stimulation at early time points, highlighting its key feature in quantitative 521 

measurement of intracellular signal cascades.  522 

In summary, we integrated and evaluated two complementary proteomic technologies using 523 

the same samples. The straightforward LC-MS, by avoiding complex sample preparation 524 

methods such as filter-aided sample preparation (FASP) or solid-phase-enhanced sample 525 

preparation (SP3), as well as pre-labeling strategies like TMT, enables a quick experimental 526 

turnaround time and is cost-efficient. With a LC run coupled with high-resolution MS using 527 

either DDA or DIA, thousands of proteins can be quantified. When coupled with RPPA, 528 

additional lower-abundance proteins and corresponding PTMs can be obtained, providing a 529 

deeper insight into signaling transduction. We demonstrated the advantages of incorporating 530 

LC-MS and RPPA as two complementary discovery proteomics technologies, allowing for a 531 
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complimentary proteomic profiling of both tissue and cell line samples, providing 532 

comprehensive mechanistic insights. 533 
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Figure legends  643 

Fig. 1. Parallel MS and RPPA proteomic profiling of TNBC and normal control tissues. A. 644 

Unsupervised hierarchical clustering of TNBC and paired normal tissues (7 versus 7) based 645 

on MS profiling. B. Unsupervised hierarchical clustering of TNBC and paired normal tissues 646 

(7 versus 7) based on RPPA profiling. C. Pairwise correlation between our MS samples and 647 

TCGA-TNBC MS samples and adjacent normal. Matched targets were used to generate 648 

sample-wise Pearson correlation and plotted using density plots. Comparisons between our 649 
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on-study samples (tumor or normal) and TCGA samples (tumor or normal) were shown on 650 

separate plots. D. Pairwise correlation between our RPPA samples and TCGA-TNBC RPPA 651 

samples and adjacent normal. Matched targets were used to generate sample-wise Pearson 652 

correlation and plotted using density plots. Comparisons between our on-study samples 653 

(tumor or normal) and TCGA samples (tumor or normal) were shown on separate plots.  654 

Fig. 2. Differentially expressed proteins between TNBC and normal controls revealed by MS 655 

or RPPA. A/B. Volcano plots showing differentially expressed targets between TNBC and 656 

normal tissue for MS and RPPA, respectively. Log2FCs are set to 1.5 and 0.8 respectively. P 657 

values, either adjusted (for MS) or non-adjusted (for RPPA) were set to 0.05 (dashed lines). 658 

C/D. GO-BP enrichment of differentially expressed proteins from MS or RPPA (both log2FC 659 

and p value cutoffs were applied). Enrichment p values (cutoff=0.05) were shown by red 660 

dashed lines. E/F. KEGG pathway enrichment of differentially expressed proteins from MS or 661 

RPPA (both log2FC and p value cutoffs were applied). Enrichment p values (cutoff=0.05) 662 

were shown by red dashed lines.  663 

Fig. 3. Overlapping proteins between MS and RPPA. A/B. Venn diagrams showing overlaps 664 

of all or differentially expressed proteins between TNBC and normal tissue profiled by MS 665 

and RPPA. C/D. Venn diagrams showing matching GO terms (MF) and KEGG pathways 666 

enriched in MS and RPPA profiling, respectively. E. Ranked matching targets correlation 667 

between MS and RPPA across samples. Blue dots show positively correlated proteins and 668 

black dots show negatively correlated proteins. F. Ranked correlation of matched 669 

differentially expressed proteins between MS and RPPA across samples. Blue dots designate 670 

positively correlated proteins and black dots designate negatively correlated proteins. 671 

Fig. 4. EGFR downregulation and ERBB2 upregulation in TNBC revealed by RPPA. A. 672 

EGFR total protein and pY1068 between TNBC and normal controls (p values). B. AKT1, 673 

pan-AKT, AKT pT308 and pS473, GSK-3β pS9 and GSK-3α/β pS21/S9 between TNBC and 674 

normal controls. C. HER2, HER2 pY1196 between TNBC and normal controls. D. B-Raf, 675 

B-Raf pS445, C-Raf and C-Raf pS338 between TNBC and normal controls. All comparisons 676 

were carried out using Wilcoxon ranked sum test with either p-values shown or asterisks 677 

representing p<0.05 (*), p<0.005 (**) and p<0.0005 (***), respectively.  678 

Fig. 5. Parallel MS and RPPA profiling on 293T cells under basal and stimulated conditions. 679 

A. Hierarchical clustering of differentially expressed proteins/modified proteins for MS (left) 680 

and RPPA (right) of 293T cells under basal or FBS-stimulated conditions. Experiments were 681 

done in triplicates. B. Volcano plots showing differentially expressed proteins or modified 682 

forms between two treatment conditions. For MS and RPPA, Log2FCs are set to 1.5 and 0.8 683 

respectively. Right panel shows unique and shared targets between MS and RPPA for all 684 

identified proteins (upper) or differentially expressed proteins (lower). C. Target-wise 685 

correlations across samples of shared proteins (presented as gene names). D. GO enrichment 686 

based on differential expressed proteins profiled through MS (left) or RPPA (right) 687 

respectively. P-values (adjusted) and counts are illustrated on the right side.  688 
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Fig. 6. Parallel MS and RPPA profiling on different cell lines. A. Hierarchical clustering of 689 

differentially expressed proteins/modified proteins for MS (left) and RPPA (right) between 690 

different cell lines (MKN-7 and OVCAR-3). Experiments were done in triplicates. B. The left 691 

panel shows unique and shared targets between MS and RPPA for all identified proteins 692 

(upper) or differentially expressed proteins (lower). Corresponding volcano plots showing 693 

differentially expressed proteins or modified forms between two cell lines. For MS and RPPA, 694 

Log2FCs are set to 1.5 and 0.8, respectively. C. Target-wise correlations across samples of 695 

shared proteins (presented as gene names) between MKN7 and OVCAR3. Positive 696 

correlation shown in green and negative correlation shown in blue. Shared differentially 697 

expressed targets shown in red. D. GO enrichment based on differential expressed proteins 698 

profiled through MS (left) or RPPA (right) respectively. P-values (adjusted) and counts are 699 

illustrated on the right side. 700 

 701 

 702 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640


TNBC4
TNBC7
TNBC2
TNBC3
TNBC1
TNBC6
Peritumor1
Peritumor6
TNBC5
Peritumor5
Peritumor3
Peritumor7
Peritumor2
Peritumor4G

roups

Groups
TNBC
Peritumor

Groups
TNBC
Peritumor

−6
−4
−2
0
2
4

R
SK1/R

SK2/R
SK3

4E−BP1_pT37_pT46
EG

FR
_pY1173

PKC
alpha

H
SP70

M
EK1

C
D

49b
H

2AX_pS140
AR

ID
1A

Akt1
C

O
G

3
A−R

af
PD

K1_pS241
p38_M

APK
G

SK−3alpha/beta
Akt−pan
C

ASP8
Sm

ac/D
iablo

eIF4E
C

yclophilin_F
R

ad51
R

SK1
BR

D
4

C
D

K2
p38_M

APK_pT180_pY182
PAK4
4E−BP1
PTEN
EG

FR
_pY1016

PAR
P

Jak2
C

ASP3−active
H

ER
2_pY1196

VDAC
1

ATR
_pS428

C
hk1_pS345

C
onnexin43

G
ATA3

G
lutam

inase
M

ETTL3
FASN
M

cl−1
IG

F−1R
−beta

Insulin R
eceptor

H
istone−H

2B−U
biquitinated

M
yosin IIa_pS1943

p44/42
STIN

G
C

D
31

PAK4_pS474_PAK5_pS602_PAK6_pS560
EM

A
C

om
plex−II−Subunit

Transglutam
inaseII

C
H

D
1L

KAP1
Akt2
TSG

101
ALKBH

5
PLC

−gam
m

a1
C

O
X_IV

PKM
2

AC
C

1
FTO
AnnexinI
PAR

K7/D
J1

G
C

LM
M

M
P14

Stat3
TR

IM
25

C
D

5
PAK1
PAIC

S
SLC

1A5
Syk
TFR

C
R

PS6_pS235_pS236
YAP_pS127
C

D
K1

C
yclin_B1

eIF4G
p70S6K1
B−R

af
M

SI2
Tuberin
C

D
K9

PKC
beta−pan_II_pS660

D
N

M
T1

YTH
D

F2
B−R

af_pS445
m

TO
R

TPX2
C

hk2
R

PS6
M

itofusin−1
ATM
H

M
H

A1
Stat5a
C

aveolin−1
R

ad50
AceC

S1
PEA−15
R

PS6_pS240_pS244
Annexin A2
Src_pY527
Vinculin
Bim
ErbB2
Acetyl−C

oA_C
arboxylase_pS79

Lasu1
AM

PKalpha_pT172
H

sp27_pS82
ER

C
C

1
C

laudin−7
PKC

d_pS664
eIF4E_pS209
N

Q
O

1
IG

FBP2
W

TAP
C

O
L6A1

FAK
H

LA−D
R

/D
P/D

Q
/D

X
R

AD
51D

FoxO
3a_pS318_pS321

M
ER

IT40_pS29
eIF4A
H

istone_H
3−K9_D

im
ethylated

Sm
ad1

TTF−1
R

b_pS807_pS811
C

hk1
VEG

FR
2

PKC
alpha_pS657

ATM
_pS1981

M
EK1/2_pS217_pS221

BAP1
C

dc6
IR

S1
Snail
PAI−1
ER

C
C

5
p27/KIP 1_pT198
PH

LPP
PALB2
EG

FR
PR

KAB1
C

−R
af

R
ab11

D
N

A Polym
erase_g

G
6PD

PD
−1

LAG
3

Src
C

atenin−beta1_pT41_pS45
W

ee1
D

vl3
SFR

P1
AU

R
KA

N
otch1

Tau
Zap−70
R

ictor_pT1135
G

SK−3beta_pS9
Akt_pT308
SG

K1
EG

FR
_pY1068

TU
FM

YB1_pS102
TIG

AR
XIAP
R

af1_pS621
VASP
XPF
G

ab2
G

SK−3alpha/beta_pS21_pS9
TSC

1
PYG

B
Enolase−2
W

IPI1
eEF2K
m

TO
R

_pS2448
IG

F1R
_pY1135_pY1136

EVI1
PD

G
FR

alpha_pY849_pY857
EphR

_A2
R

ad17_pS645
C

EN
P−A

ER
R

a
N

−R
as

PEA15_pS116
TAZ
C

ASP7−Asp198−cleaved
G

lycogen_Synthase_pS641
PER

K
c−Abl
AM

PKalpha_2_pS345
Atg7
Bax
AM

PKalpha
C

D
K1_pY15

R
AD

54L
D

R
P1

M
itofusin−2

G
R

B2
Stat5a_pS726
Pum

a
C

atenin−beta1
IG

F−IR
−beta

LC
K_pT505

SO
X17

N
F−kappaB p65_pS536

C
−R

af_pS338
BR

C
A1

M
ITF

Akt1_pS473
ATR
SG

K3
PD

K1
U

LK1_pS757
E−C

adherin
Sox2
Actin_beta
H

ES1
AU

R
KA_pT288

4−O
ct

Tyro3
RO

S1
C

D
86

C
oup−TFII

JU
N

_pS63
LR

P6_pS1490
KAT2A
SIR

Pa
M

erlin/N
F2

M
SH

6
p44/42M

APK_pT202_pT185_pY204_pY187
C

D
26

SM
AD

3_pS423_pS425
C

hk2_pT68
Ets−1
C

ASP6
R

PA32_pS4_pS8
TSC

2_pT1462
R

af1_pS296
Tubulin_beta
SH

P−2
IN

PP4B
M

EK2
Fas
c−M

et
XPA
G

SK−3beta
Sm

ad3
Paxillin
C

yclin_D
3

LD
H

A
FAK_pY397
PM

S2
Akt_pS473
C

D
171

SerpinB2
H

SP27
R

b
D

U
SP4

C
atenin−beta1_pS33_pS37

R
ictor

Axl
ErbB2_pY1248
D

D
R

1
H

SPA9
Atg3
p44/42M

APK_pT202_pT204
Src_pY416
Topoisom

erase2−alpha
4E−BP1_pS65
p21
p53
ASN

S
PLK1
14−3−3−z
Sm

ad4
M

LKL
M

LST8
PKC

alpha/beta II_pT638_pT641
Estrogen_R

eceptor−alpha
p44/p42M

APK_pT202_pY204/p42_pT185_pY187
Fibronectin
H

istone H
3

Estrogen_R
eceptor−alpha_pS118

p38a_M
APK

Beclin
G

YS1
PI3K_p110beta
H

ER
2_pY1222

SH
P−2_pY542

Bad_pS112
c− Jun_pS73
TR

IP13
LC

3A/B
p27/KIP 1
PTPN

12
C

D
63

LC
N

2
Erk5
Akt3
JN

K2

TNBC4
TNBC3
TNBC7
TNBC2
TNBC1
TNBC6
Peritumor6
Peritumor5
Peritumor1
Peritumor7
Peritumor3
TNBC5
Peritumor2
Peritumor4G

roups

−5

0

5

10

A
Figure 1

B

C

0

10

20

30

−0.03 −0.02 −0.01
correlation

de
ns

ity

On−study TNBC samples 
vs TCGA peritumor samples

0

5

10

15

−0.050 −0.025 0.000 0.025 0.050
correlation

de
ns

ity

On−study TNBC samples 
vs TCGA TNBC samples

0

10

20

30

−0.06 −0.05 −0.04 −0.03 −0.02

de
ns

ity

On−study peritumor samples
vs TCGA peritumor samples

correlation

0

2

4

6

0.1 0.2 0.3

correlation

de
ns

ity

On−study peritumor samples
vs TCGA peritumor samples

0

5

10

15

−0.06 −0.04 −0.02 0.00 0.02

de
ns

ity

On−study peritumor samples
vs TCGA TNBC samples

correlation

0

1

2

3

−0.2 −0.1 0.0 0.1 0.2 0.3

correlation

de
ns

ity

On−study peritumor samples
vs TCGA TNBC samples

0

1

2

3

4

−0.2 −0.1 0.0 0.1 0.2 0.3

correlation

de
ns

ity

On−study TNBC samples
vs TCGA peritumor samples

0

1

2

3

4

−0.2 −0.1 0.0 0.1 0.2

correlation

de
ns

ity

On−study TNBC samples
vs TCGA TNBC samples

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640


A

Figure 2

C

E F

B

D

CHCHD5

SERPINC1
COL6A2

DCN COL6A1
OLFML1

ADH1B

SRM

UBE2I
PLCG2

MYLK

CLIC1
CTSS

TNBC  Peritumor0

1

2

3

4

5

−2 0 2

log2FC

−l
og

10
 p

va
lu

e

TNBC_vs_Peritumor

MS GO Biological Process

MS KEGG RPPA KEGG

RPPA GO Biological Process

Tyro3 AURKA_pT288
CD86 MERIT40_pS29

EGFR
PRKAB1

PDK1_pS241

p38_MAPK
GSK−3alpha/beta

CASP8
Akt−panFTO

TNBC  Peritumor0

1

2

3

4

5

−5 0 5 10

log2FC

−l
og

10
 a

dj
us

te
d 

pv
al

ue

TNBC_vs_Peritumor

p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05

ribonucleoprotein complex biogenesis
ribonucleoprotein complex assembly

ribonucleoprotein complex subunit organization
RNA splicing

mRNA splicing
cytoplasmic translation

regulation of mRNA splicing
regulation of mRNA metabolic process
regulation of mRNA processing
Golgi vesicle transport
ribosome assembly
regulation of RNA splicing
aerobic respiration
positive regulation of protein−containing complex assembly
translational initiation
regulation of protein−containing complex assembly
generation of precursor metabolites and energy
protein folding
ATP metabolic process
regulation of translation

20 10 5 0 5 10 20 50
Enrichment significance [−log10p]

20
30
40
50

−log10p

p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05

protein localization to nucleus
platelet aggregation

regulation of protein localization to nucleus
regulation of protein localization to membrane

regulation of intracellular transport
extrinsic apoptotic signaling pathway

peptidyl−threonine modification
peptidyl−tyrosine modification

peptidyl−tyrosine phosphorylation
epithelial cell proliferation

peptidyl−threonine phosphorylation
neuron death

aging
protein autophosphorylation

histone phosphorylation
regulation of cell−cell adhesion

positive regulation of cellular protein localization
peptidyl−serine modification

peptidyl−serine phosphorylation

regulation of protein localization to plasma membrane

10 5 0 5 10 20
Enrichment significance [−log10p]

12
16
20

−log10p

p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05

Amyotrophic lateral sclerosis
Protein processing in endoplasmic reticulum

Parkinson disease
Spliceosome

Prion disease
Coronavirus disease − COVID−19

Ribosome

Carbon metabolism
Phagosome
Salmonella infection
Pathogenic Escherichia coli infection
Bacterial invasion of epithelial cells
Lysosome
Chemical carcinogenesis − reactive oxygen species
Oxidative phosphorylation
Diabetic cardiomyopathy
Pathways of neurodegeneration − multiple diseases
Alzheimer disease
Proteasome
Huntington disease

10 5 0 5 10 20
Enrichment significance [−log10p]

5
10
15
20
25

−log10p

p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05p = 0.05

PD−L1 expression and PD−1 checkpoint pathway in cancer
Fc epsilon RI signaling pathway

Breast cancer
Neurotrophin signaling pathway

Influenza A
Glioma

ErbB signaling pathway
Proteoglycans in cancer

HIF−1 signaling pathway
mTOR signaling pathway
FoxO signaling pathway

Hepatocellular carcinoma
Endometrial cancer

Non−small cell lung cancer
EGFR tyrosine kinase inhibitor resistance

Thyroid hormone signaling pathway
Growth hormone synthesis, secretion and action
Signaling pathways regulating pluripotency of stem cells
Prolactin signaling pathway
Central carbon metabolism in cancer

10 5 0 5 10 20
Enrichment significance [−log10p]

12
15
18
21

−log10p

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640


A

C

B

D

E                        F

Figure 3

MS

762 8               56

RPPA
DE Target

MS

2522 61 160

RPPA
Total Target

MS

108 7 50

RPPA
GO MF

RPPA

125 17 32

MS
KEGG

−0.5

0.0

0.5

1.0

PA
IC

S
C

O
X

_I
V

P
K

M
2

eI
F

4G
T

R
IM

25
R

P
S

6
C

om
pl

ex
−I

I−
S

ub
un

it
M

M
P

14
FA

S
N

C
O

L6
A

1
C

O
G

3
C

yc
lo

ph
ili

n_
F

LD
H

A
V

in
cu

lin
eI

F
4E

Tr
an

sg
lu

ta
m

in
as

eI
I

V
D

A
C

1
A

nn
ex

in
 A

2
C

D
K

1
A

C
C

1
p4

4/
42

S
ta

t3
A

ce
C

S
1

A
S

N
S

G
lu

ta
m

in
as

e
M

E
K

1
S

m
ac

/D
ia

bl
o

F
TO

P
E

A
−1

5
C

A
S

P
3−

ac
tiv

e
K

A
P

1
H

S
P

70
H

M
H

A
1

C
D

63
G

Y
S

1
H

S
PA

9
S

LC
1A

5
M

ito
fu

si
n−

2
S

yk
A

nn
ex

in
I

C
D

26
14

−3
−3

−z
H

S
P

27
M

S
H

6
VA

S
P

N
−R

as S
rc

A
M

P
K

al
ph

a
B

ax
Tu

bu
lin

_b
et

a
S

H
P

−2
D

R
P

1
P

Y
G

B
G

R
B

2
E

−C
ad

he
rin

A
ct

in
_b

et
a

T
U

F
M

C
at

en
in

−b
et

a1
E

no
la

se
−2

R
ab

11
G

6P
D

C
oe

f

Group − +

RPPA vs MS Protein correlation analysis

−0.5

0.0

0.5
P

K
M

2

eI
F

4G

C
yc

lo
ph

ili
n_

F

eI
F

4E

V
D

A
C

1

C
D

K
1

R
ab

11

G
6P

D

C
oe

f
Group − +

RPPA vs MS DE Gene correlation analysis

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640


D

Figure 4

0.26

1.0

1.5

2.0

Peritumor TNBC

Ex
pr

es
si

on

B−Raf
**

1

2

Peritumor TNBC

Ex
pr

es
si

on

B−Raf_pS445
**

2

4

6

Peritumor TNBC

Ex
pr

es
si

on

C−Raf
*

5

10

15

20

Peritumor TNBC

Ex
pr

es
si

on

C−Raf_pS338

A **

2

4

6

Peritumor TNBC

Ex
pr

es
si

on
EGFR

0.073

0.50

0.75

1.00

1.25

1.50

Peritumor TNBC

Ex
pr

es
si

on

EGFR_pY1068

B

Peritumor TNBC

*

5

10

15

20
Ex

pr
es

si
on

Akt_pT308
**

1

2

3

Peritumor TNBC

Ex
pr

es
si

on

Akt−pan
*

0.3

0.6

0.9

1.2

1.5

Peritumor TNBC

Ex
pr

es
si

on

Akt1
*

20

40

60

Peritumor TNBC

Ex
pr

es
si

on

Akt1_pS473

*

2
3
4
5
6

Peritumor TNBC

Ex
pr

es
si

on

GSK−3alpha/beta_pS21_pS9
**

0.5

0.7

0.9

1.1

Peritumor TNBC

Ex
pr

es
si

on

GSK−3beta_pS9

C

Peritumor TNBC Peritumor TNBC

0.073

0.75

1.00

1.25

1.50

Ex
pr

es
si

on

ErbB2
0.073

0.2

0.4

0.6

0.8

Ex
pr

es
si

on

HER2_pY1196

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640


C

A

Figure 5

5 Star2 rep1
Star2 rep2
Star1 rep2
Star1 rep1
Star3 rep1
Star3 rep2
FBS3 rep1
FBS3 rep2
FBS1 rep1
FBS2 rep1
FBS2 rep2
FBS1 rep2G

roups

Groups
FBS
STARVATION

−2

−1

0

1

2

H
SP70

R
PS6_pS240_pS244

p44/42M
APK_pT202_pT185_pY204_pY187

p44/p42M
APK_pT202_pY204/p42_pT185_pY187

Fibronectin
M

ER
IT40_pS29

U
LK1_pS757

H
ES1

R
b_pS807_pS811

R
ictor_pT1135

m
TO

R
_pS2448

Akt_pT308
G

SK−3alpha/beta_pS21_pS9
JU

N
_pS63

G
SK−3beta_pS9

YB1_pS102
Akt_pS473
R

PS6_pS235_pS236
YAP_pS127

293T_STAR3_1
293T_STAR1_2
293T_STAR2_3
293T_STAR1_1
293T_STAR2_1
293T_STAR2_2
293T_FBS2_1
293T_FBS1_2
293T_FBS3_1
293T_FBS1_1
293T_FBS2_2
293T_FBS3_2G

roups

Groups
FBS
STARVATION

−2
−1
0
1
2

RNF113A
PSMF1

RAB7A OPTN
TAB2

SENP2 TOB1

LMTK2

NUP50GADD45GIP1
BOLA1

MKNK2NCOA3
DPYSL3

FBS  STARVATION0

2

4

6

−2 0 2
log2FC

−l
og

10
 p

va
lu

e

FBS_VS_STARVATION

Akt_pS473

YAP_pS127

Rictor_pT1135

RPS6_pS235_pS236

MERIT40_pS29

RPS6_pS240_pS244

p44/p42MAPK_pT202_pY204/p42_pT185_pY187
p44/42MAPK_pT202_pT185_pY204_pY187

FBS STARVATION0

2

4

6

−2 0 2 4

log2FC

FBS_VS_STARVATION
MS RPPA
Total Target

−l
og

10
 p

va
lu

e2234  83 138

127 11

MS RPPA

DE Target

−0.5

0.0

0.5

1.0

AR
ID

1A
PA

IC
S

C
H

D
1L

AK
T2

IR
S1

M
AP

2K
2

D
N

M
T1

C
TN

N
B1

M
ET

TL
3

AC
AC

A
PA

K1
SL

C
1A

5
PL

K1 N
F2

PR
KA

A1
TS

C
1

IN
SR

G
YS

1
BR

D
4

PT
PN

12
H

SP
B1

BC
L2

L1
1

R
B1

FA
SN

R
PS

6K
A3

SR
C

C
H

EK
1

EG
FR

G
6P

D
EI

F4
G

1
TP

53
AK

T3
PK

M
YT

H
D

F2
AR

H
G

AP
45

M
SH

6
ST

AT
3

PD
PK

1
AN

XA
2

YW
H

AZ
TP

X2
D

N
M

1L
PE

A1
5

PR
KC

A
VC

L
EI

F4
EB

P1
PR

KA
B1

ER
BB

2
VD

AC
1

IG
F1

R
TR

IM
25

AL
KB

H
5

AT
R

AB
L1

H
U

W
E1

SM
AD

3
PA

LB
2

AK
T1

R
PS

6K
B1

PT
PN

11
TR

IM
28

AT
M

W
EE

1
PT

K2
TO

P2
A

R
AF

1
C

D
K1

ER
C

C
5

C
D

K2
TS

C
2

BR
C

A1
HS

PA
1A

,H
SP

A1
B

PA
K4 FA

S
R

PS
6K

A1
PX

N
AC

SS
2

C
H

EK
2

R
IC

TO
R

R
AD

50
BR

AF

Co
ef

RPPA vs MS Gene correlation analysis

Group +−

B

D

negative regulation of stem cell differentiation
regulation of protein import into nucleus

positive regulation of protein import into nucleus
translational initiation

insulin receptor signaling pathway
regulation of nucleocytoplasmic transport

positive regulation of protein localization to nucleus
positive regulation of nucleocytoplasmic transport

regulation of organelle assembly
positive regulation of intracellular transport

positive regulation of intracellular protein transport
regulation of protein localization to nucleus

import into nucleus
protein import into nucleus

nuclear transport
nucleocytoplasmic transport

protein localization to nucleus
establishment of protein localization to organelle

0.03 0.05 0.07 0.09 0.11
GeneRatio

Count
4
6
8
10

0.01
0.02
0.03
0.04

p.adjust

BP

regulation of polysaccharide biosynthetic process
cellular response to cadmium ion

enteroendocrine cell differentiation
regulation of glycogen metabolic process
regulation of glucan biosynthetic process

regulation of glycogen biosynthetic process
energy reserve metabolic process

glandular epithelial cell differentiation
protein autophosphorylation

endocrine system development
TOR signaling

peptidyl−threonine modification
peptidyl−threonine phosphorylation

mesenchyme development
gliogenesis

positive regulation of cellular catabolic process
peptidyl−serine modification

peptidyl−serine phosphorylation
cell growth

regulation of cell growth

0.2 0.3 0.4 0.5
GeneRatio

Count
4
5
6
7
8
9
10

1e−06
2e−06
3e−06
4e−06
5e−06

p.adjust

BP

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640


A

B

C

Figure 6

M
cl−1

ASN
S

AnnexinI
Fas
C

D
171

E−C
adherin

SG
K3

p38_M
APK_pT180_pY182

p44/42M
APK_pT202_pT185_pY204_pY187

ErbB2_pY1248
R

b_pS807_pS811
EG

FR
_pY1068

ErbB2
p44/p42M

APK_pT202_pY204/p42_pT185_pY187
Akt_pT308
C

D
K2

Transglutam
inaseII

IN
PP4B

M
M

P14
AU

R
KA

LC
N

2
C

dc6
C

oup−TFII
R

ad17_pS645
G

lutam
inase

PAI−1
C

D
49b

XPA
Akt3
Axl
D

U
SP4

MKN−7_1
MKN−7_2
MKN−7_3
OVCAR−3_1
OVCAR−3_2
OVCAR−3_3

G
roups

Groups
MKN7
OVCAR3

−1.5
−1
−0.5
0
0.5
1
1.5MKN7_1

MKN7_2

MKN7_3

OVCAR3_1

OVCAR3_2

OVCAR3_3G
roups

Groups
MKN7
OVCAR3

−1.5

−1

−0.5

0

0.5

1

1.5

SCFD1

ITGA3 LAMA3

EML2
NEK7TUBB6CTSD

FDXRMDK ALDH6A1
TSEN34SLC12A2

PDCD4UBE2O

MKN7  OVCAR30

2

4

6

8

−5 0 5
log2FC

−l
og

10
 p

va
lu

e

MKN7_VS_OVCAR3

ErbB2

CD49b
CDK2Cdc6AURKA

Coup−TFII
PP4BIN
MMP14eGlutaminas

EGFR_pY1068
AnnexinI

Fas

ASNS
Mcl−1

MKN7  OVCAR30

1

2

3

4

5

−5 0 5
log2FC

−l
og

10
 p

va
lu

e

MKN7_VS_OVCAR3

RPPA

RPPAMS

MS

 12 11

5731  151  70

1782

−1.0

−0.5

0.0

0.5

1.0

E
R

B
B

2
C

D
K

2
PA

IC
S

IT
G

A
2

R
A

D
50

A
N

X
A

1
R

P
S

6
LD

H
A

P
LC

G
1

P
TP

N
12

LC
N

2
AU

R
K

A
B

R
A

F
G

LS
H

S
P

B
1

TS
C

1
P

TE
N

E
E

F2
K

R
IC

TO
R

C
H

E
K

2
P

R
K

A
A

1
A

S
N

S
TG

M
2

C
O

X
4I

1
AT

M
V

C
L

P
P

IF
C

D
H

1
B

E
C

N
1

M
C

L1
C

H
E

K
1

M
A

P
2K

1
R

P
S

6K
A

1
A

R
ID

1A
M

A
P

K
7

C
D

K
9

D
V

L3
G

6P
D

H
U

W
E

1
TU

B
B

3
AT

G
7

M
E

TT
L3

M
S

H
6

C
H

D
1L

L1
C

A
M

AT
G

3
P

R
K

C
A

S
R

C
P

Y
G

B
E

IF
4G

1
P

IK
3C

B
P

M
S

2
Y

TH
D

F2
E

S
R

R
A

P
O

LG
B

R
D

4
M

TO
R

E
R

C
C

5
P

E
A

15
TR

IP
13

C
C

N
B

1
G

Y
S

1
S

D
H

B
TR

IM
28

FN
1

X
IA

P
C

AV
1

E
P

H
A

2
C

D
K

1
A

K
T2

PA
K

4
FA

S
N

M
FN

2
A

LK
B

H
5

A
C

TB
S

LC
1A

5
P

LK
1

PA
K

1
D

N
M

1L
AT

R
M

LS
T8

C
A

S
P

8
N

O
TC

H
1

A
N

X
A

2
D

N
M

T1
D

D
R

1
C

A
S

P
3

M
A

P
2K

2
Y

W
H

A
Z

S
M

A
D

4
E

R
C

C
1

P
R

K
A

B
1

TP
X

2
TO

P
2A

TS
G

10
1

S
M

A
D

3
M

S
I2

A
K

T3
N

R
A

S
C

O
L6

A
1

S
M

A
D

1
C

LD
N

7
G

R
B

2
M

FN
1

S
TA

T3
C

A
S

P
6

C
TN

N
B

1
A

C
S

S
2

IN
S

R
C

D
K

N
1B

R
A

B
11

A
P

K
M

TR
IM

25
R

B
1

P
X

N
C

O
G

3
E

N
O

2
TI

G
A

R
FT

O
M

A
P

K
3

TP
53

H
S

PA
9

TU
FM

D
IA

B
LO

E
IF

4E
B

P
1

VA
S

P
A

R
A

F
V

D
A

C
1

G
C

LM
E

G
FR

P
TP

N
11

R
P

S
6K

B
1

P
D

P
K

1
M

U
C

1
R

A
F1

A
C

A
C

A
N

F2
C

D
63

A
B

L1
W

TA
P

E
IF

4E
A

K
T1

TS
C

2
TF

R
C

R
A

D
54

L
W

E
E

1
B

A
X

G
A

B
2

P
TK

2
R

A
B

11
B

R
P

S
6K

A
3

C
oe

f

RPPA vs MS Gene correlation analysis

Group − +

Total Target

DE Target

D

alpha−amino acid biosynthetic process

cellular amino acid biosynthetic process

regulation of actin filament length

regulation of actin polymerization or depolymerization

negative regulation of cytoskeleton organization

negative regulation of supramolecular fiber organization

regulation of protein polymerization

actin polymerization or depolymerization

actomyosin structure organization

alpha−amino acid metabolic process

protein−containing complex disassembly

regulation of actin filament organization

cellular amino acid metabolic process

regulation of actin cytoskeleton organization

regulation of actin filament−based process

small molecule catabolic process

negative regulation of organelle organization

regulation of supramolecular fiber organization

actin filament organization

cellular component disassembly

0.02 0.03 0.04 0.05
GeneRatio

p.adjust

1e−06

2e−06

3e−06

4e−06

5e−06

Count

40

60

80

BP

cellular response to cadmium ion

response to epidermal growth factor

positive regulation of mitotic cell cycle

homeostasis of number of cells

stress−activated protein kinase signaling cascade

stress−activated MAPK cascade

regulation of leukocyte migration

response to reactive oxygen species

cellular response to reactive oxygen species

regulation of cell growth

regulation of mitotic cell cycle phase transition

gliogenesis

cellular response to oxidative stress

cell growth

regulation of cell cycle phase transition

response to oxidative stress

cellular response to chemical stress

gland development

peptidyl−serine modification

peptidyl−serine phosphorylation

0.15 0.20 0.25 0.30
GeneRatio

p.adjust

2e−05

4e−05

6e−05

Count

4

6

8

10

BP

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.30.596640doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596640

