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Spatial transcriptomics analysis of
esophageal squamous precancerous lesions
and their progression to esophageal cancer

Xuejiao Liu1,2,7, Simin Zhao2,3,4,7, Keke Wang2,7, Liting Zhou1,2,4, Ming Jiang2,
Yunfeng Gao2, Ran Yang2, Shiwen Yan1,2,4, Wen Zhang1,2,4, Bingbing Lu1,2,4,
Feifei Liu1,2,4, Ran Zhao1,2, Wenting Liu1,2, Zihan Zhang1,2,4, Kangdong Liu1,2,4,5,6,
Xiang Li 1,2,4,5,6 & Zigang Dong 1,2,4,5,6

Esophageal squamous precancerous lesions (ESPL) are the precursors of
esophageal squamous cell carcinoma (ESCC) including low-grade and high-
grade intraepithelial neoplasia. Due to the absence of molecular indicators,
which ESPLwill eventually develop into ESCC and thus should be treated is not
well defined. Indicators, for predicting risks of ESCC at ESPL stages, are an
urgent need.Weperform spatial whole-transcriptome atlas analysis, which can
eliminate other tissue interference by sequencing the specific ESPL regions. In
this study, the expression of TAGLN2 significantly increases, while CRNN
expression level decreases along the progression of ESCC. Additionally,
TAGLN2protein level significantly increases in paired after-progression tissues
compared with before-progression samples, while CRNN expression decrea-
ses. Functional studies suggest that TAGLN2 promotes ESCC progression,
while CRNN inhibits it by regulating cell proliferation. Taken together, TAGLN2
and CRNN are suggested as candidate indicators for the risk of ESCC at ESPL
stages.

Esophageal cancer is one of the most aggressive and lethal malignant
tumors in the world. It is mainly classified into two subtypes: eso-
phageal squamous cell carcinoma (ESCC) and esophageal adeno-
carcinoma (EAC)1–3. ESCC is mainly distributed in East Asia and is the
major type of esophageal cancer occurred in China4. Esophageal
squamous precancerous lesions (ESPL) are considered potential
precursors of ESCC, exhibiting a progression from normal epithelia
(NE) to low-grade intraepithelial neoplasia (LGIN), high-grade
intraepithelial neoplasia (HGIN), and eventually developing into
invasive cancer. According to the extent of the cancer invasion into
the esophageal mucosa, LGIN can be divided into mild dysplasia and

moderate dysplasia, and HGIN including severe dysplasia and carci-
noma in situ5,6.

In a cohort of 682 patients who underwent endoscopy, 114 indi-
viduals (16.7%) were diagnosed with ESCC during a 13.5-year follow-up
period. The relative risks (with 95% confidence intervals) for develop-
ing ESCC, based on the initial histological diagnosis, were as follows:
normal, 1.0 (reference); mild dysplasia, 2.9 (1.6–5.2); moderate dys-
plasia, 9.8 (5.3–18.3); severe dysplasia, 28.3 (15.3–52.3); and carcinoma
in situ, 34.4 (16.6–71.4)5. Notably, a clear trend was observed, with
higher grades of dysplasia associatedwith a significantly increased risk
of developing ESCC. Therefore, studying the pathogenesis from ESPL
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to ESCC and understanding its underlying mechanisms are helpful to
clarify the etiology of ESCC development and will provide an impor-
tant foundation for early prevention strategy discovery.

Significant improvements in diagnostic technology, particularly
early detection, have contributed to the reduction in cancer mortality
rates. Nevertheless, there is currently a lack of precise indicators for
the early diagnosis of ESCC. Presently, the conventional approach to
investigate ESCC indicators primarily involves the analysis of differ-
entially expressed genes (DEGs) between normal and esophageal
cancer tissues7. Although these indicators canbe valuable inpredicting
prognostic outcomes like overall survival and disease-free survival,
they may not be suitable as indicators for ESPL. Moreover, they may
not adequately demonstrate the potential for ESCC development in
patients initially diagnosed with LGIN or HGIN.

Currently, publications have only reported the genomics8 and
DNA methylation of ESPL9,10. There are few reports on the pathogen-
esis from ESPL to ESCC, primarily due to the following reasons: (1)
Fresh ESPL tissues, typically obtained from biopsies, are not suffi-
ciently large to support multi-omics analysis; (2) The majority of the
tissue is composed of normal epithelia (NE), with only a small regionof
the ESPL tissue, especially at the early stage of precancerous lesions,
representing the actual ESPL. When using these tissues for bulk RNA-
seq, the data may be imprecise. Therefore, advanced technology is an
urgent need to study the progression of ESCC. Spatial transcriptomics,
which preserves spatial location, offers vital information for studying
the relationships between cell function, phenotype, and
microenvironment11,12. Utilizing the spatial transcriptome sequencing
methodwill enable the selection and sequencing of the authentic ESPL
regions without interference from other tissues.

Clinically, LGIN patients usually need to inspect once a year or
several years later without surgical treatment. HGIN patients are sug-
gested to do endoscopic submucosal dissection or endoscopic
mucosal resection. Considering the incidence of esophageal cancer in
individualswith a normal esophagus and LGIN, it is impractical to leave
all LGIN patients untreated. Thus, indicators, that can predict risks of
ESCC when people are diagnosed with ESPL, as well as distinguish
whether the LGIN patient needs treatment or not to prevent progres-
sion of ESCC, arenecessary. For this reason, we select the real ESPL and
invasive cancer parts as regions of interest for spatial whole-
transcriptome atlas (WTA) analysis from paraffin-embedded tissue
sections to find genes that accelerate ESPL transition to ESCC.

In this study, ESPL status is analyzed. Immune microenvironment
analysis reveals an immune suppressive condition in ESPL stages.
Principal component and DEGs analysis indicate that cancer-like
changes primarily initiate at the HGIN stage. Certain DEGs demon-
strate progressive increase or decrease throughout the disease pro-
gression from ESPL to ESCC. Machine learning methods are employed
to shortlist potential candidate genes. These genes are confirmed
through IHC staining, revealing a significant increase in TAGLN2
expression and a decrease in CRNN expression across pathological
stages. Validation using paired before-progression and after-
progression tissue confirms the correlation of TAGLN2 and CRNN
with ESCC progression. Cell proliferation analysis, colonies formation
assay, and in vivo study illustrate the functional role of these candidate
genes in the progression of ESCC. Based on our study, early inter-
vention is recommended upon detecting aberrant expression of
TAGLN2 and CRNN, even at the LGIN stage. Our findings could con-
tribute to the prevention of esophageal cancer.

Results
Spatial whole-transcriptome profiling of ESPL
To characterize the pathogenesis from ESPL to ESCC, we conducted
spatial whole-transcriptome profiling, as depicted in Fig. 1a. The entire
process involves probe hybridization with photocleavable oligo-
conjugated antibodies, selection of regions of interest (ROIs),

photocleavage, oligos collection, and gene expression sequencing.
Serial sections of tissue samples were used for H & E staining andWTA
analysis. Figure 1b illustrates a schematic diagram of ESCC progres-
sion. In most cases, dysplasia covering over half of the esophageal
mucosa is classified as HGIN, otherwise, it is considered LGIN. ESCC is
characterized as a type of cancer where cancerous cells breach the
basal layer. Representative WTA-analyzed tissue samples with H & E
staining orfluorescent labeling are shown in Fig. 1c. ROIs were selected
based on H & E and Pan-cytokeratin staining. Regions of NE, LGIN,
HGIN, and ESCC are shown in the appointed area. The region with the
maximum ROI was selected to obtain the largest lesion area for
sequencing. WTA sequencing was conducted with these tissues from
selected ROIs. In this WTA experiment, all the ROIs passed technical
signal quality control and technical background quality control (Sup-
plementary Fig. 1a–d).

ESPL status analysis
Investigating the status of these precancerous lesions is essential for
understanding the etiology andmechanismsof ESCCprogression. This
study focused on analyzing the status of ESPL as well as ESCC stage
from several aspects, including biological processes that occur during
tumorigenesis, regulatory network, abnormalmetabolic pathways that
occur in tumors, abnormal signal transductionpathways in cancer, and
immune-related pathways (Fig. 2a). Cancer development involves a
complex interplay of cellular processes. Among these processes,
mitotic chromosome condensation13, mitotic sister chromatid cohe-
sion, and DNA conformation change14 are vital for ensuring proper
chromosome segregation during cell division. In normal cells, these
processes are tightly regulated, but in cancer cells, they can become
dysregulated, leading to abnormal chromosome segregation and
genomic instability. The increase in mitotic chromosome condensa-
tion may promote the development of genetic mutations or chromo-
somal abnormalities commonly observed in cancer cells. Additionally,
increased mitotic sister chromatid cohesion can lead to improper
chromosomealignment, resulting in aneuploidy, which is a hallmarkof
many types of cancer. Finally, increasedDNAconformation change can
alter gene expression patterns, contributing to the development of
cancer. Therefore, an increase in theseprocesses during tumorigenesis
stages suggests that they may play important roles in the transfor-
mation from ESPL to ESCC.

Cell cycle and the p53 signaling pathway are integral processes in
cancer development15. In cancer cells, cell cycle can become dysregu-
lated, resulting in uncontrolled cell growth and division. Similarly, the
p53 signaling pathway is one of the body’s primary defense mechan-
isms against cancer. This pathway is activated when DNA damage is
detected, allowing the cell to repair the damage or undergo apoptosis.
Unfortunately, in cancer cells, the p53 pathway can become dysregu-
lated, allowing damaged cells to continue growing and dividing
uncontrollably. Overall, the dysregulation of these processes leads to
the accumulation of geneticmutations or chromosomal abnormalities,
contributing to uncontrolled cell growth and division. The enrichment
of these two pathways increases with ESCC progression, which is
consistent with the pattern of ESPL progression to ESCC.

Several abnormal metabolic processes16 increased during ESCC
progression including purine, pyrimidine metabolism, and citric acid
cycle. The pathway of nucleotide metabolism is important as it is
responsible for the production of purine and pyrimidine molecules
that are necessary for tasks such as DNA replication, RNA synthesis,
and cellular bioenergetics. When the rate of nucleotide metabolism is
increased, it can lead to uncontrolled growth and proliferation of
tumors, which is a common characteristic of cancer. As such, elevated
nucleotide metabolism is often regarded as a hallmark sign of cancer.
The citric acid cycle is essential for generating cellular energy by
breaking down various nutrients, including glucose, amino acids, and
fatty acids. This cycle can also support the Warburg effect17 by
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providing intermediates required for biosynthesis pathways like lipid
and nucleotide synthesis. As a result, this process can facilitate cancer
growth.

Cancer-related abnormal signal transduction pathways including
EGFR, FGFR, WNT, TGF-beta, and MAPK are activated during ESCC
progression stages. Immune cells are an essential part of tumor
initiation and development18–20. Tumor-associated fibroblasts (CAFs),
Matrix and Matrix remodeling-related genes enriched from NE to
ESCC. Matrix remodeling plays an important role in immune micro-
environment reconstruction and CAFs greatly affect Matrix remodel-
ing. The progression of tumors is strongly influenced by these
factors21.

We also analyzed the immune infiltration of ESPL and ESCC
samples to explore the changes in the immune microenvironment by
the Spatialdecon (Version 1.8.0) safeTME deconvolution method22.

This method enables the quantification of immune cell types using
spatial transcriptomic data. The heatmapof immune cell abundance in
different ROIs is shown in Fig. 2b. Immune cell proportion across the
four pathological stages was investigated to reveal the changes of
immune cells during ESCC tumorigenesis (Fig. 2c–e). Thedata revealed
an increase in fibroblasts and macrophages during the transition from
ESPL to ESCC. Fibroblasts, a major component in the tumor micro-
environment, are involved in the regulation of cancer cell proliferation
and invasion as well as participating in immune regulation23,24. Mac-
rophages play an important role in accelerating tumor progression25.
Additionally, we observed a decrease in M1 macrophages, which have
an anti-cancer effect, during ESPL stages, while M2 macrophages with
cancer-promoting function increased, as analyzed by Cibersort (Ver-
sion 1.04). To validate the expression of fibroblasts and macrophages
in NE, LGIN, HGIN, and ESCC stages, we utilized specific markers

Seq
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Fig. 1 | Spatial whole-transcriptome profiling of ESPL. a Schematic of the WTA
analysis. The whole process includes probe hybridization with photocleavable
oligo-conjugated antibodies, ROIs selection, photocleavage, oligos collection, and
gene expression sequencing. b Schematic diagram of ESCC progression. Dysplasia
covering over half of the esophageal mucosa is classified as HGIN, otherwise, it is
considered LGIN. ESCC is recognized as the cancer cell breaking through the basal

layer. c Representative tissue samples with H& E staining (Scale bar, 5mm, and 100
μm, representative of n = 3 independent experiments), or fluorescent labeling for
WTA analysis (Scale bar, 5mm and 50 μm). Morphologically NE, LGIN, HGIN, and
ESCC regions as well as partially magnified images of ROIs are appointed in the
picture. Pan-cytokeratin (green), CD45 (pink), and Syto13 (blue) are stained for
epithelial cells, immune cells, and nucleus, respectively.
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Fig. 2 | Status analysis of ESPL. aHeatmapof ESPL and ESCC in biological processes
that occur during tumorigenesis, regulatory network, abnormal metabolic pathways
that occur in tumors, abnormal signal transduction pathways in cancer, and immune-
related pathways. b Immune cells abundance in each ROI. c Stacked histogram
showing immune cell proportion across the four pathological stages. d Fibroblasts
andmacrophages cell abundance in precancerous and ESCC stages. Brown-Forsythe
and Welch ANOVA test with Dunnett’s T3 multiple comparisons for the comparison
among groups. ROIs number: NE (n = 11), LGIN (n = 12), HGIN (n = 12), ESCC (n= 7).
eMacrophage cell proportion is divided into M0, M1, and M2 macrophage cells.

f Validation of fibroblast and macrophage expression was performed by immuno-
fluorescence using specific markers (α-SMA for fibroblasts and CD68 for macro-
phages). Sample size: NE (n = 10), LGIN (n = 10), HGIN (n = 10), ESCC (n = 10)
biologically independent samples. Kruskal–Wallis test and corrected by Dunn’s test
for multiple comparisons. g Representative images of immunofluorescence staining
(Scale bar, 100 μm). In the box plots (d, f), the boxplot shows the median (central
line), upper and lower quartiles (box limits), andmin tomax range (whiskers). Source
data are provided as a Source Data file.
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(α-SMA for fibroblasts and CD68 for macrophages) in immuno-
fluorescence staining. Our results demonstrated increased expression
levels of α-SMA and CD68 across various disease stages, ranging from
NE to ESCC (Fig. 2f, g), indicating an escalation in fibroblasts and
macrophages abundance. Taken together, the results of fibroblasts,
macrophages, and the increasing proportion of T regulatory cells
(Treg) in LGIN and HGIN stages indicate an immune suppressive
microenvironment during ESPL stages. In the ESCC stage, there is a
decrease in the proportion of M2 macrophage cells and Treg cells
compared to the ESPL stages, possibly due to the activation of the
immune system in response to early-stage tumorigenesis as it actively
combats the tumor. Our results illustrate the immunosuppressive
condition in ESPL stages, potentially attenuating the anti-tumor
immune response and accelerating ESCC tumorigenesis.

Differentially expressed genes analysis from spatially defined
regions of ESPL
Principal component analysis (PCA) by analyzing the spatially
defined regions of ESPL showed a different expression profile among
NE, LGIN, HGIN, and ESCC (Fig. 3a). The figure demonstrates clear
separation between NE and ESCC samples. Furthermore, LGIN
exhibited greater similarity to NE than HGIN, while HGIN displayed
more similarity to ESCC than LGIN. These findings support the idea
that HGIN carries a higher risk of progressing into ESCC compared to
LGIN. The PCA analysis demonstrated that WTA analysis of spatially
defined ESPL closely corresponds to the histopathological pheno-
types of malignant progression stages during ESCC development.
The presence of some LGIN samples in close proximity to HGIN
samples suggests that certain LGIN tissues share a similar transcrip-
tional background with HGIN, potentially indicating the possibility of
progression from the LGIN stage to the HGIN stage, and ultimately
ESCC. Hence, LGIN patients with a high risk of ESCC may require
early treatment.

To identify DEGs that may imply the risk of ESCC when patients
arediagnosedwith LGINorHGIN,wecompared theDEGs among LGIN,
HGIN, and ESCC groups. The gene expression heatmap and cluster
analysis for each group are shown in Supplementary Fig. 2a, b. The
upset plot revealed 21 up-regulated co-DEGs and 23 down-regulated
co-DEGs that overlapped DEGs between LGIN vs NE, HGIN vs NE, and
ESCC vs NE (Fig. 3b, c). The LGIN group exhibited a much smaller
number of DEGs (only 63 genes) compared to the HGIN (826 genes) or
ESCC group (1298 genes), suggesting fewer cancer-like characteristics
and some similarities with NE features. This finding is consistent with
PCA data.

The analysis of DEGs between different groups is shown in Fig. 3d.
In the comparison between the LGIN group andNE group, significantly
higher levels ofMAL, TMPRSS11B, EMP1, EPS8L1, ECM1, and KRT78were
observed in normal tissue, while the LGIN group exhibited higher
expression level of S100A7, KRT1, KRT16, KRT10, GSTA1, and RPN2.
Comparing the HGIN group with the NE group revealed up-regulated
DEGs such as KRT17, IGHG2/3/4, and IGKC, whereas down-regulated
DEGs included SPRR3, KRT4, MAL, CRNN, CNFN, and TGM3. The ESCC
group exhibited high levels of KRT10, KRT16, KRT17, KRTDAP, and IF16,
while showing low levels of CRNN, MAL, KRT4, KRT13, KRT78, and
SPINK5 when compared with the NE group. The gene expression
heatmap of progressively changed co-DEGs among the LGIN, HGIN,
and ESCC groups is presented, showing the candidate gene expression
level in each group separately (Fig. 3e).

To elucidate the mechanisms in esophageal cancer pathogen-
esis, we performed pathway enrichment analysis among the LGIN,
HGIN, and ESCC groups. Figure 3f displays the changes in signaling
pathways between each two groups, while Supplementary Fig. 2c–e
and Supplementary Fig. 3a-f show the pathway-related genes. The
LGIN group exhibited involvement in the formation of the cornified
envelope and keratinization signaling pathways compared with the

NE group. However, as the disease progressed to HGIN and ESCC
stages, the enrichment of these signaling pathways-related genes
decreased. In the HGIN group, the DEGs were found to be involved in
signaling pathways such as DNA methylation, ERCC6 (CSB), and
EHMT2 (G9a), which positively regulate rRNA expression and RNA
polymerase I promoter opening, among others. The ESCC group
showed similar changes in signaling pathways as the HGIN group,
with differences mainly observed in the cornified envelope, kerati-
nization, Ub-specific processing proteases, extracellular matrix
organization, and syndecan interaction signaling pathways. The
enrichment in the extracellular matrix organization signaling path-
way aligns with our immune microenvironment analysis. Figure 4a
presents rank-based gene set enrichment analysis (GSEA) of gradient-
changed signaling pathways during ESCC tumorigenesis and repre-
sentative genes. Our data suggest that gene expression and biologi-
cal functions begin to alter during ESCC tumorigenesis at the LGIN
stage. However, despite these changes, PCA and DEGs of LGIN show
similarities to NE, while significant cancer-like changes primarily
commence from the HGIN stage. Considering the possibility of pro-
gression from the LGIN stage to the HGIN stage, and eventually ESCC,
early intervention for LGIN patients at high risk of ESCC is warranted.

For a comprehensive understanding of the esophageal epithelial
cell status transitions and their correlation with DEGs, we employed
pseudotime analysis26,27 using SCORPIUS28,29 (version 1.0.8) to simulate
developmental trajectories of ESCC. The pseudotime analysis
demonstrated a remarkable correspondence between esophageal
epithelial cell transitions and the development stage of ESCC (Fig. 4b).
We further enriched the heatmap of gradient-developed DEGs
according to pseudotime and ESCC progression (Fig. 4c), along with
the expression of representative genes correlated with pseudotime
(Fig. 4d). Among our data, the formation of the cornified envelope and
keratinization emerged as the most significantly changed signaling
pathways, indicating their pivotal role during ESCC progression. As a
result, we defined the Differentiation & Keratinization (D & K) score,
utilizing a gene panel correlated with cell differentiation and kerati-
nization, to predict the prognosis of ESCC (Supplementary Table 1).
Notably, a low D & K score was associated with a poor prognosis.
Furthermore, based on co-DEGs that progressively increase in LGIN,
HGIN, and ESCC, we defined the Cancerization score (Supplementary
Table 1). A high cancerization score was found to be indicative of a
shorter survival time (Fig. 4e). All the genes utilized in the D & K score
and Cancerization score analysis are selected from DEGs with the |
log2(FC)| > 1 in ESPL stages, allowing for the prediction of patient
prognosis when diagnosed with ESPL.

Candidate indicators screening for predicting the risk of ESCC
The DEGs that exhibit progressive changes starting from the LGIN
stage and continuing through all stages may potentially accelerate
ESCC tumorigenesis. To identify potential candidate genes serving as
risk indicators for the progression of ESPL to ESCC, we analyzed the
expression levels of co-DEGs at NE, LGIN, HGIN, and ESCC stages. The
co-DEGs that show progressive changes were considered as potential
candidates. In order to differentiate between NE, LGIN, HGIN, and
ESCC and identify geneticmarkers that canguide patientmanagement
and personalized treatment options for individuals at risk of devel-
oping ESCC from ESPL, it was crucial to establish the genes’ ability to
distinguish between these stages. Considering that PCA analysis indi-
cated greater similarity betweenHGIN and ESCC and that patients with
HGIN and ESCC require treatment, while those with normal mucosa
and LGIN do not, we divided our WTA sequenced samples into three
distinct groups. These groups consisted of a normal group (N), a low-
grade group (L) including LGIN, and amalignant group (M) comprising
both HGIN and ESCC.

K-nearest neighbor (knn), logistic regression (logre), support
vector machine (svm), random forest (rf), neural network regression
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(nnet), naive bayes (nbs), and decision trees (rpart) are the major
algorithms used in machine learning. A prediction model is created to
forecast the N, L, and M states by utilizing gene expression data
obtained from a particular sample. To assess our prediction model’s
efficacy in distinguishing N, L, andM states based on co-DEGs (Fig. 5a),
we utilized these seven machine learning models. Logloss, also known
as logarithmic loss, is a scalar that assesses the classifier’s accuracy in
predicting class probabilities for classification tasks. It calculates the
deviation between predicted and actual target probabilities. Improved
algorithm performance is demonstrated by lower logloss values.
Multiclass area under the curve (multiclass AUC) is a metric utilized to
evaluate classification model performance when handling multiple
classes. It measures howwell themodel can distinguish between these
classes. Higher multiclass AUC values indicate that the algorithm is
better at distinguishing between different classes. In our study, we
sought to ascertain the algorithms that exhibited optimal efficacy in
classification tasksby assessing both logloss values andmulticlass AUC
values. After a thorough evaluation, we identified two algorithms knn
and logre that displayed superior performance than other algorithms
across both metrics, characterized by a smaller average logloss value
and a higher AUC value. Thus, we selected these two algorithms for
further investigation of the candidate indicator panel to narrow down
the list of candidate genes.

The results of the logre algorithm are presented as a list of genes
along with their corresponding importance rank values. The gene list
is organized in descending order based on their importance value,
from the most significant to the least significant (Supplementary
Fig. 4a). To determine the optimal configuration for the knn algo-
rithm, we assessed its logloss value by varying k values and the
number of genes utilized. After thorough evaluation, we identified
that the optimized result was achieved with a k value of 6 and 20
genes (Supplementary Fig. 4b, c). The gene panel obtained from the
knn algorithm is listed in Supplementary Table 2. The overlap
between the gene panel generated by the knn algorithm and the
genes with an importance rank > 50 from the logre algorithm
revealed that CRNN, KRT17,MAL, KRT16, and TAGLN2 genes exhibited
higher importance than other genes (Fig. 5b).

Haye et al. reported that KRT17 was detected in HGIN pre-
malignant lesions of esophagealmucosa30. Additionally, another study
indicated that MAL as a regulator of esophageal epithelium differ-
entiation, was observed in normal tissue, but not in dysplastic lesions
or cancer tissue31. Based on the results obtained from pseudotime
analysis, the gene panel of D & K and cancerization score, and the
predictionmodel classifier, we identified TAGLN2, KRT16, and CRNN as
potential candidate indicators. Moreover, we selected KRT17 andMAL
as positive controls to assess the effectiveness of our candidate genes
in comparison to these previously reported indicators for ESPL diag-
nosis. Our spatial WTA sequencing data revealed that mRNA levels of
TAGLN2, KRT16, and KRT17 increased during the progression of ESCC,
while the mRNA levels of CRNN and MAL genes were down-regulated
(Fig. 5c, Supplementary Fig. 5a). Further validation from the TCGA and
GTEx database (https://xenabrowser.net) showed that the expression
data of these genes in esophageal tumor tissue compared with normal
tissuewere consistentwith ourWTA results of theNE and ESCCgroups
(Supplementary Fig. 5b). These data provide additional evidence to
support the credibility and accuracy of our sequencing results. To
validate the gene expression, we collected and extracted RNA from
paired human normal and ESCC tissue samples, and quantitative RT-
PCR was performed. The data demonstrated increased mRNA
expression levels of TAGLN2, KRT16, and KRT17, while CRNN and MAL
exhibited decreased expression. (Fig. 5d, Supplementary Fig. 5c).
These findings were consistent with our WTA results and the data
obtained from the TCGA database.

To evaluate the feasibility of the candidate genes as indicators of
ESPL, we conducted IHC staining on NE, LGIN, HGIN, and ESCC

tissues in the validation cohort (Fig. 5e, f, Supplementary Fig. 5d–f).
Our data revealed that the protein level of TAGLN2 significantly
increased along with the pathological progression from LGIN to
ESCC compared with NE. Similarly, KRT16 expression level was sig-
nificantly up-regulated in the HGIN stage compared with NE, while
CRNN expression was down-regulated in ESPL and ESCC. On the
other hand, the protein levels of KRT17 and MAL did not exhibit any
significant statistical differences across the four stages. Based on
these results, we narrowed down the candidates’ list to TAGLN2,
CRNN, and KRT16. To validate our predictionmodel, we used our IHC
data. Our indicator candidates (TAGLN2, KRT16, and CRNN) demon-
strated a high area under the curve (AUC) in distinguishing N, L, and
M groups with AUC values of 0.88, 0.853, and 0.952, respectively
(Fig. 5g). The prediction model was further validated using data from
the GEO dataset (GSE161533) (Fig. 5g). Since the RNAseq data of ESPL
is unavailable, we utilized the GEO_GSE161533 data, which includes
normal and ESCC samples, for partial validation [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE161533]. Our candidate indi-
cators exhibited an AUC over 0.85 in both N and M groups. Among
the discovery set, validation set, and GEO set, 131 out of 162 samples
were correctly identified. The total accuracy of N, L, and M groups
was 47/51, 16/31, and 68/80, respectively (Fig. 5h). The lower pre-
dictive accuracy in the validation set of the L groupmay be attributed
to the small number of L group samples and differences in data types
(mRNA data of discovery set and GEO set, protein expression data of
validation set). Nevertheless, these data suggest that TAGLN2, KRT16,
and CRNN may have potential utility as diagnostic markers for ESPL,
even during the LGIN stage.

Verification of the association between candidate genes and
ESCC progression
To investigate the association of these candidate indicators with
progression, we obtained paired tissue samples from patients who
were initially diagnosed with LGIN and later progressed to HGIN, or
those who were first diagnosed with HGIN and later progressed to
ESCC for IHC validation. However, due to the rarity of paired tissue
samples from the same individual corresponding to before- and
after-progression, as well as the typically several years required for
LGIN progression to ESCC, paired tissue samples from individuals
who progressed from LGIN to ESCC were unavailable. We labeled the
tissue taken from the initial diagnosis as “before-progression”
(Before) and the tissue procured from later diagnoses as “after-pro-
gression” (After). Our analysis of the IHC scores on all paired pro-
gressed samples revealed that TAGLN2 protein levels were
significantly increased in the after-progression group tissues com-
pared with the before-progression group, while CRNN expression
decreased (Fig. 6a). Further analysis of the IHC scores in LGIN pro-
gression and HGIN progression samples showed that TAGLN2 IHC
score was significantly up-regulated in the after-progression group of
LGIN samples. In the HGIN progression samples, the mean IHC score
value of TAGLN2 exhibited an increase in the after-progression group
compared to the before-progression group, although it did not reach
statistical significance due to the limited sample size (Fig. 6b–d). On
the other hand, CRNN’s IHC score significantly decreased in both
LGIN and HGIN progression samples (Fig. 6b–d). These results
strongly suggest that TAGLN2 and CRNN are correlated with ESCC
progression. However, KRT16 did not show any statistical sig-
nificance in these paired samples, indicating that it cannot be used as
an indicator of ESCC progression (Supplementary Fig. 6a–c). There-
fore, KRT16 was excluded from further studies.

Candidate genes expression in epithelial cell type, pan-cancer,
and prognosis analysis
Single-cell RNA sequencing (scRNA-seq) provides a powerful tool for
studying tumor heterogeneity and the tumor microenvironment.
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Considering ESPL is mainly localized in the epithelium layer, we won-
dered whether these candidate genes are specifically expressed in
epithelial cells and the expression level. Fresh tissue samples are a
prerequisite for performing scRNA-seq analysis. However, as surgical
procedures are not standard clinical practice for patients diagnosed
with LGIN, biopsy specimens cannot provide enough fresh tissue for
scRNA-seq. Thus, we performed bioinformatics analysis using scRNA-

seq data from published studies to evaluate TAGLN2 and CRNN gene
expression in normal and ESCC tissue (Fig. 7a). For this analysis, we
utilized the scRNA-seq datasets GSE159929 and GSE160269.
GSE159929 contains a comprehensive adult human cell atlas with
84,363 cells from 15 different tissue organs of a single adult donor.
GSE160269 consists of 208,659 single-cell transcriptomes from 60
individuals diagnosed with ESCC, including 60 ESCC tumors and 4
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adjacent normal tissue samples. We specifically focused on the epi-
thelial cells data from both datasets and excluded samples with less
than 1000 cells. The remaining epithelial cells were further divided
into basal squamous epithelial cells and squamous epithelial cells. Our
analysis revealed that TAGLN2wasexpressed in both types of epithelial
cells and exhibited higher expression levels in cancer tissue compared
to the normal group. On the other hand, CRNN showed specific

expression in squamous epithelial cells of normal tissue and negligible
expression in cancer tissue. Based on our findings, TAGLN2 and CRNN
are expressed in squamous epithelial cells, which suggests their
potential utility as candidate indicators for both ESPL and ESCC diag-
noses. This observation aligns with our IHC results. However, it is also
possible that these candidate genes contribute to the acceleration of
ESCC progression by triggering the transformation of normal

Fig. 5 | Potential indicators screening for the diagnosis of ESPL and predicting
the risk of ESCC. a Logloss and multiclass AUC were analyzed by seven machine
learning models (n = 10 for NE, LGIN, HGIN, and ESCC group, respectively). b The
importance rank of signatures. The overlap genes between logre and knn algorithm
results aremarked with red and blue colors. Red color-marked genes indicated the
overlap genes with importance rank >50. The red and blue triangles indicated gene
expression up-regulated and down-regulated, respectively. knn (k-nearest neigh-
bor); logre (logistic regression); svm (support vector machine); rf (random forest);
nnet (neural network regression); nbs (naive bayes); rpart (decision trees).
cCandidate gene (TAGLN2 and CRNN) expression in the four pathological stages by
spatial WTA analysis. NE, LGIN, HGIN, and ESCC ROIs number (n = 11, 12, 12, 7).
Mann–Whitney U test was used for the comparison with the NE group. In the box
plots (a, c), the boxplot shows the median (central line), upper and lower quartiles
(box limits), and 1.5 × interquartile range (whiskers).dRelativemRNA expression of

candidate genes in paired normal and ESCC tissue. NE (n = 10), ESCC tumor tissue
(n = 10) biologically independent samples. The data was analyzed by a two-tailed
paired t-test. e Positive staining statistics of TAGLN2 and CRNN in the four patho-
logical stages by IHC staining. The sample size is labeled in the figure.
Kruskal–Wallis test and corrected by Dunn’s test for multiple comparisons. The
boxplot shows themedian (central line), upper and lower quartiles (box limits), and
min to max range (whiskers). f Representative pictures of IHC stained slides (Scale
bar, 100 μm, representative of n = 3 independent experiments.). g ROC plots of
gene panel (TAGLN2, KRT16, CRNN) in distinguishing N and M groups from IHC
staining data and GEO dataset (GSE161533). h Overall performance metrics of the
predictionmodel for N, L, andMgroups. Graduated colors indicate accuracy levels.
The number in eachbox indicate correctly identified samples/total sample number.
Source data are provided as a Source Data file.
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Fig. 6 | Verification of the association between candidate genes and ESCC
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epithelial cells into malignant ones. Further research and functional
studies are warranted to fully understand the roles of TAGLN2 and
CRNN in esophageal cancer development and progression.

To assess the specificity of candidate gene expression, we
investigated their expression across multiple cancer types using data
from the TCGA and GTEx databases (https://xenabrowser.net)
(Fig. 7b). The results revealed that TAGLN2 was broadly expressed in
various cancer types, with significantly increased expression espe-
cially in tumor tissues of GBM (Glioblastoma Multiforme), CHOL

(Cholangiocarcinoma), and ESCA (Esophageal Carcinoma) compared
to normal tissues. On the other hand, CRNN expression significantly
decreased in tumor tissues of DLBC (Diffuse Large B-Cell Lymphoma),
HNSC (Head and Neck Squamous Cell Carcinoma), and ESCA. To
assess the relationship between gene expression and cancer prog-
nosis, we conducted overall survival analysis for the candidate genes
(http://www.kmplot.com). Higher mRNA expression of TAGLN2 or
lower mRNA level of CRNN was associated with shorter overall sur-
vival and poorer prognosis (Fig. 7c).
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Fig. 7 | Candidate genes expression in epithelial cell type, pan-cancer, and
prognosis analysis. a Bioinformatics analysis of TAGLN2 and CRNN gene expres-
sion in normal and ESCC tissue by single-cell sequencing. Different colors indicated
different cell types. Dark blue dots represented the designated gene expression
b Candidate gene expression in multi-cancer types from TCGA database. The
sample size is indicated in the figure. The boxplot shows the median (central line),
upper and lower quartiles (box limits), and 1.5 × interquartile range (whiskers). For
the comparison of TAGLN2 expression between Tumor and Normal group: ACC
(p= 0.3045), BLCA (p= 2.53E−08), BRCA (p= 8.16E−92), CESC (p= 8.90E−09),
COAD (p = 2.52E−53), DLBC (p= 3.09E−27), ESCA (p= 1.38E−24), GBM (p= 7.06E
−97), KICH (p= 0.0144), KIRC (p = 1.97E−10), KIRP (p =0.0021), LAML (p=0.0037),
LGG (p= 3.91E−07), LIHC (p= 5.23E−36), LUAD (p= 1.27E−18), LUSC (p= 4.70E−06),
OV (p = 1.07E−91), PAAD (p= 1.21E−33), PRAD (p= 3.76E−23), READ (p= 1.51E−46),

SKCM (p= 1.94E−10), STAD (p= 1.68E−18), TGCT (p= 0.5421), THCA (p= 6.53E−26),
THYM (p= 2.71E−76), UCEC (p= 1.42E−49), UCS (p = 0.0002), HNSC (p= 8.57E−13),
CHOL (p = 4.64E−13). For the comparison of CRNN expression between Tumor and
Normal group: ACC (p = 1.58E−72), BLCA (p= 0.0081), BRCA (p= 2.60E−42), CESC
(p= 0.155), COAD (p= 3.13E−111), DLBC (p= 2.79E−63), ESCA (p= 7.67E−70), GBM
(p= 1.41E−55), KICH (p= 3.45E−10), KIRC (p = 0.0005), KIRP (p = 1.08E−12), LAML
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THCA (p= 4.27E−63), THYM (p = 2.68E−83), UCEC (p= 7.22E−17), UCS (p = 2.10E
−40), HNSC (p= 8.01E−12), CHOL (p=0.0317) (Mann–Whitney U test). c Overall
survival analysis of candidate genes fromTCGAdatabase. Source data are provided
as a Source Data file.
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Identifying candidate indicators’ role in accelerating ESCC
progression
Functional investigations can offer initial insights into the molecular
mechanisms underlying the influence of genes in promoting cancer
progression. The functions of TAGLN2 and CRNN in different types of
cancer have been studied in various literature32–34. With the intent to
estimate the impact of candidate genes in promoting ESCC progres-
sion, we constructed TAGLN2 knockdown cell lines and CRNN over-
expressed cell lines to evaluate the effects of these candidate genes in
ESCC. First, we detected the protein level of TAGLN2 and CRNN in
ESCC cell lines (Supplementary Fig. 7a) to select high-expression cell
lines for TAGLN2 knockdown analysis and gene low-expression cell
lines for CRNN overexpression study. The efficiency of TAGLN2
knockdown and CRNN overexpression was assessed by Western blot
(Fig. 8a). TAGLN2 knockdown or CRNN overexpression inhibited ESCC
cells proliferation (Fig. 8b). The suppression of colony formation in
ESCC was observed due to TAGLN2 knockdown or CRNN over-
expression through the anchorage-independent cell growth assay and
clonogenic formation assay (Fig. 8c–f).

Tumor organoids are valuable tools in cancer research, facilitating
gene function studies and anti-cancer drug screening35. TAGLN2
knockdown or CRNN overexpression led to a reduction in organoid
numbers compared to the relevant vector control group (Fig. 8g, h).

Patient-derived xenograft (PDX) model potentially retains the
donor’s genetic characteristics, making it more similar to human than
cell line-derived xenograft. To investigate the role of TAGLN2 and
CRNN in ESCC progression, we selected a PDX case (LEG404) with
higher TAGLN2 expression and lower CRNN expression from our
established ESCC PDXmodels (Supplementary Fig. 7b). Subsequently,
we transplanted the PDX tumor into mice and administered desig-
nated candidate gene viruses twice a week to evaluate the impact of
these genes on ESCC growth in vivo. Our data revealed that TAGLN2
knockdown or CRNN overexpression inhibited ESCC PDX tumor
growth, leading to reduced tumor volume and tumor weight, without
any adverse effects on the mice body weight (Fig. 8i–k, Supplemen-
tary Fig. 7c).

To ensure the reliability of our findings, we performed a rescue
experiment to address potential off-target effects and unphysiologi-
cally high amplification levels resulting from shRNA and gene over-
expression techniques. The rescue experiment involved
overexpressing TAGLN2 in cells where TAGLN2 was knocked down, or
inhibitingCRNNwhereCRNNwasoverexpressed.Westernblot analysis
confirmed the efficiency of the rescue experiment (Supplementary
Fig. 8a). In the rescue group, we observed increased cell proliferation
and colony formation, as indicated by cell proliferation assay,
anchorage-independent cell growth assay, and clonogenic formation
assay, upon manipulating TAGLN2 and CRNN (Supplementary
Fig. 8b–f). Collectively, the in vitro and in vivo data support the notion
that TAGLN2 and CRNN participated in accelerating malignancy in
ESCC cells.

Furthermore, we conducted experiments using a human normal
esophageal cell line (SHEE) to investigate the role of these genes in the
transformation from normal cells to malignant cells. Specifically, we
examined the effects of overexpressing TAGLN2, which is lowly
expressed in SHEE, and knocking down CRNN, which is highly
expressed in SHEE. The successful overexpression of TAGLN2 and
knockdownofCRNNwere confirmedbyWestern blot analysis (Fig. 9a).
Under normal conditions, SHEE cells are unable to form colonies in
anchorage-independent cell growth assays. However, when these cells
were stimulated with EGF, they exhibited signs of transformation into
malignant cells, as evidenced by the formation of clones (Fig. 9b). By
simulating the process of normal cells transforming into malignant
cells with the addition of EGF, we aimed to evaluate whether TAGLN2
and CRNN accelerate the progression of ESCC. The results from cell
proliferation experiments revealed that overexpression of TAGLN2 or

knockdown of CRNN significantly promoted SHEE cell proliferation
(Fig. 9c). In anchorage-independent cell growth assays, both TAGLN2
overexpression and CRNN knockdown significantly increased the
number of colonies compared to the control group, indicating that
TAGLN2 promotes the transformation of normal cells to malignant
cells, while CRNN inhibits this transformation (Fig. 9d, e). Collectively,
these findings, along with the results of IHC analysis of paired samples
before- and after-progression and the normal esophageal cell trans-
formation assay, suggest that TAGLN2 and CRNN are associated with
the progression of ESCC. Furthermore, TAGLN2 is implicated in pro-
moting ESCC progression, while CRNN is involved in inhibiting ESCC
progression by regulating cell proliferation.

Although most patients with LGIN do not require immediate
treatment, monitoring the expression levels of TAGLN2 and CRNN can
serve as indicators for potential progression to ESCC at ESPL stages.
Patients displaying high-expression levels of TAGLN2 and low-
expression levels of CRNN should be closely monitored for ESCC
development, as this information can contribute to early diagnosis and
prevention strategies for ESCC.

Discussion
Advances in tissue omics analysis, such as genomics, epigenomics, and
next-generation sequencing techniques, have provided significant
opportunities for biomarker discovery. However, current ESCC-related
biomarkers basedon gene expressiondifferences between normal and
ESCC tissues have limited prognostic predictive ability. To address this
limitation and identify indicators for the detection of ESPL and pre-
diction of progression risk, we employed spatial whole-transcriptome
analysis (WTA) using FFPE samples. This approach allows us to
sequence limited biopsy tissue samples and specifically target the ESPL
region compared to bulk RNAseq. Nano-string WTA technology offers
an unbiased landscape of expressed human whole transcripts at
designated tissue sections, surpassing the limitations of in situ hybri-
dization or immunohistochemistry with limited antibodies or probes.
Nonetheless, spatial WTA has some inherent limitations, such as the
maximumsize of the region of interest (ROI) being 800 µm,whichmay
not cover the entire tissue area, and each ROI containing approxi-
mately 600 cells, preventing single-cell resolution. Furthermore,
unlike common 10X Visium spatial transcriptome sequencing, nano-
string WTA cannot reconstruct a gene expression heatmap at each
spot of the tissue. Nevertheless, the probe-based detection method of
spatial WTA analysis provides high sensitivity to detect lowly expres-
sed genes. Moreover, several tissues can be placed on one slide during
the same operation, reducing the impact of human manipulation on
gene expression. Despite these limitations, spatial WTA remains a
valuable approach for researchers to study spatial-related gene
expression in the context of ESPL and ESCC.

Single-cell RNA sequencing (scRNA-seq) has emerged as a pow-
erful tool in recent years for studying tumor heterogeneity and tumor
microenvironments. By analyzing specific gene markers’ expression
levels, researchers can identify and categorize different cell subtypes,
allowing for the study of gene expression, related signaling pathways,
and even cell fate within these subtypes. Additionally, scRNA-seq has
the potential to uncover previously unidentified cell subtypes. How-
ever, conducting scRNA-seq requires fresh tissue, which is not typically
obtained through surgery for LGIN patients in clinical practice. As a
result, biopsy specimens may not be sufficient for scRNA-seq analysis.
Currently, human scRNA-seq data related to ESCC mainly consists of
normal/adjacent tissue and ESCC tissue samples36,37. Furthermore,
scRNA-seq analysis of continuous tumorigenic lesions has primarily
been performed on mouse models38, which introduces species varia-
tion between humans and mice. To characterize our candidate indi-
cators more reliably, we utilized human scRNA-seq data to investigate
TAGLN2 and CRNN distributions in normal and cancerous epithelial
cells. Our analysis revealed distinct expression patterns for TAGLN2
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Fig. 9 | Identifying candidate genes’ role in the transformation of human nor-
mal esophageal cells to malignant cells and the schematic of the spatial WTA
analyses of ESPL and ESCC. a Overexpression and knockdown efficiency of
TAGLN2 and CRNN detected by western blot. b Colony formation ability of human
normal esophageal cell (SHEE) with the stimulation of EGF by anchorage-
independent cell growth assay (Scale bar, 200 μm). c Cell proliferation analysis of
TAGLN2 overexpression or CRNN knockdown in normal esophageal cells (n = 6
biological replicates, mean ± SD) . ****p = 1.32e-006, ****p = 4.30e-009, ****p = 1.21e
−010 for the comparison of TAGLN2 OE and NC; ****p = 5.59e−007, ****p = 2.50e-
006, ****p = 2.23e−005 for the comparison of shCRNN and shNC by a two-tailed
unpaired t-test at 24h, 48 h, and 72 h, respectively. d Colony formation ability of
TAGLN2 overexpressed or CRNN silenced SHEE cells with the stimulation of EGF
analyzed by anchorage-independent cell growth assay (n = 3, independent

experiments by a two-tailed unpaired t-test with Welch’s correction, mean ± SD).
e Representative image of anchorage-independent cell growth assays (Scale bar,
200 μm). f Schematic of the spatial WTA analyses of ESPL and ESCC. Human NE,
LGIN, HGIN, and ESCC tissue were analyzed by spatial WTA profiling. The status of
ESPL, DEGs, and the prediction model were analyzed by bioinformatics. Candidate
genes were validated for the association with ESCC progression in paired before-
progression and after-progression tissue samples from the same individuals. ESCC
cell lines, normal esophageal cells, organoids, and the ESCC PDXmodel were used
for identifying the mechanism of candidate genes’ role in accelerating ESCC pro-
gression. Data are presented as mean values ± SD by a two-tailed paired t-test. The
boxplot shows themedian (central line), upper and lower quartiles (box limits), and
min to max range (whiskers). Scale bar, 200 μm. Source data are provided as a
Source Data file.
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and CRNN in these cell types, with CRNN showing specific distribution
in normal squamous epithelial cells.

Whole-genome and whole-exome sequencing provide compre-
hensive insights into genome variations in esophageal cancer. Com-
mon alterations reported include TP53, NOTCH1, and PIK3CA39–41.
Dysplasia, the precursor lesion of ESCC has been found to harbor
similar driver genes as ESCC itself8. Copynumber alterations have been
observed to persist fromdysplasia to ESCC. However, these alterations
are not specific to esophageal cancer, as evidenced by the high
mutation rate of TP53 in ovary cancer and colon cancer42. Unlike other
cancers with specific mutations such as BRCA1/2 in breast cancer and
EGFR in lung cancer, ESCC lacks tumor-specific mutations. Notably,
somatic mutations also occur in physiologically normal human eso-
phageal tissue43. Thus, we consider mutations may not be indis-
pensable for ESCC initiation and progression. Transcriptome
aberrance offers an alternative explanation for these phenomena. Our
data reveals that the number of DEGs in the LGIN group (63) is con-
siderably lower than that in the HGIN group (826) and ESCC group
(1298). This observation suggests a potential relationship between
DEGs in LGIN samples and ESCC initiation and development, particu-
larly during the first step fromNE to LGIN transition. Consequently, we
investigated the expression of these candidate initiators in the four
pathological stages and evaluated their function in ESCC progression.

The publication using continuous tumorigenic lesions of mice for
scRNA-seq identified six transitional-related genes selected from dif-
ferent epithelial clusters38. Although our WTA data showed similar
expression patterns for these six genes, some differences were
observed (Supplementary Fig. 9a). Notably, S100A8 and ALDH3A1 did
not demonstrate statistical significance in our data, despite the pub-
lication reporting a notabledecrease in cancer incidence.TOP2A,ATF3,
and MMP14 showed no statistical significance in the LGIN group
compared with NE, indicating their unsuitability for LGIN diagnosis.
Additionally, ITGA6, which was significantly up-regulated during ESCC
progression, was excluded from our candidate list based on stricter
criteria (|log2(FC)| ≥ 1 and p < 0.05). We also analyzed other indicators
previously utilized for ESPL diagnosis in clinical and preclinical
settings44–51 (Supplementary Fig. 9b). In the LGIN stage, none of these
markers significantly increased comparedwith NE. However, EGFR and
LAMC2 exhibitedmarked elevation in HGIN and ESCC, suggesting their
potential in identifyingHGIN and ESCC. TP53,MKI67, and TLR9 showed
differences in only one stage, while ANO1, USP9X, CCN2, and LTO1 did
not show any differences across stages. Collectively, our candidate
indicators demonstrated superior performance compared to the
reported indicators.

Yao and colleagues conducted a comprehensive scRNA sequen-
cing study on mice with multistep tumorigenic lesions38, revealing the
FibC8 fibroblast cluster with increased expression of genes from Myc
and angiogenesis pathways as ESCC tumorigenesis advanced, with the
highest proportion observed at the ESCC stage. Similarly, in our study,
we also observed an enrichment of angiogenesis-related genes in the
ESCC stage. In their study, a reduction in the proportion of CD8+
memory T cells was observed as the tumorigenic process progressed
beyond the INF stage, indicating a dominant non-effective CD8+ T cell
microenvironment during the precancerous stages. Our study also
demonstrated a similar decrease in CD8+ memory T cells at ESPL
stages (Fig. 2c). The consistency of these findings between the mice
model and humans suggests that the mouse model induced by 4NQO
is a suitable approach for simulating the progression of esophageal
cancer.

In summary, our study utilized a spatial whole-transcriptome atlas
to identify potential indicators for predicting ESCC risk at ESPL stages
and to investigate the underlying mechanism of pathogenesis from
ESPL to ESCC transition (Fig. 9f).We analyzed the biological processes,
regulatory network, abnormal metabolic pathways, signal transduc-
tion pathways, and immune-related pathways that occur during

tumorigenesis in ESPL and ESCC stages. Our findings indicated an
immunosuppressive condition in ESPL stages, potentially contributing
to the acceleration of ESCC tumorigenesis. Through spatial WTA ana-
lysis and IHC staining, we observed an upregulation of TAGLN2 and a
downregulation of CRNN expression during ESCC progression from
ESPL to ESCC. Notably, TAGLN2 expression significantly increased in
the paired after-progression tissues compared with before-
progression tissue from the same individual, while CRNN expression
decreased, suggesting a correlation of TAGLN2 and CRNN with ESCC
progression. Functional studies involving TAGLN2 knockdown and
CRNN overexpression demonstrated their inhibitory effects on ESCC
cell proliferation, colony formation, organoid growth, and ESCC PDX
tumor growth. Furthermore,weobserved thatTAGLN2overexpression
and CRNN knockdown promoted the transformation of normal eso-
phageal cells into malignant cells. This provides compelling evidence
that TAGLN2 is indeed involved in promoting ESCC progression, while
CRNN exerts an inhibitory role in ESCC progression through the reg-
ulation of cell proliferation. The insights gained from our study pro-
vide fundamental information for understanding the pathological
process of ESCC development and may serve as an early warning for
ESCC, contributing to the prevention and early intervention of eso-
phageal cancer.

Methods
Experimental reagents
KRT16 (66802-1-Ig, Clone No. 2H4D8, 1:2000 for WB, 1:1000 for IHC),
KRT17 (17516-1-AP, 1:1000 for WB, 1:50 for IHC), TAGLN2 (10234-2-AP,
1:1000 for WB, 1:100 for IHC), CRNN (11799-1-AP, 1:1000 for WB, 1:200
for IHC) antibodies were purchased from Proteintech company. MAL
(MA5-32924, Clone No. B5-G3, 1:1000 for WB, 1:100 for IHC) was
obtained from the Invitrogen company. CD68 (ab955, Clone No. KP1,
1:50 for IF) and alpha-SMA (ab124964, Clone No. EPR5368, 1:200 for IF)
were purchased from Abcam company. GAPDH (TA-08, Clone No.
OTI2D9, 1:2000 for WB) was obtained from the ZSGB-BIO company.
Goat anti-rabbit IgG H & L (HRP) (ab205718, 1:5000 for WB) antibody
was purchased by Abcam company.

Spatial whole-transcriptome atlas
Five micrometers slices of ESPL and ESCC patient formalin-fixed par-
affin-embedded (FFPE) tissue samples were sent to Nano-String spatial
whole-transcriptome analysis (Fynn Biotechnologies Ltd). The tissue
samples utilized for spatial WTA sequencing were obtained from
patients diagnosed with LGIN, HGIN, or ESCC (n = 6, 6, and 7, respec-
tively). We opted not to select surgical samples from ESCC patients
that contained LGIN and HGIN adjacent to the cancerous area. This
decision was driven by the fact that the patients had already been
diagnosed with ESCC. Consequently, it is unclear whether there are
alterations in the gene or transcriptome information of the LGIN and
HGIN adjacent to the cancerous area when compared to patients with
LGIN and HGIN under normal conditions without a history of ESCC.
Specifically, the NE group samples were selected from the normal
epithelial region of LGIN patients, indicating that NE and LGIN samples
originate from the same person (n = 6). To ensure experimental
accuracy, a total of four slides were employed for spatial WTA
sequencing. Slides 1–3 contained ESPL tissues, each slide consisting of
two LGIN and two HGIN patient tissues. Slide-4 comprised an ESCC
tissue microarray (TMA), with each spot corresponding to one ESCC
patient sample. Each ESPL slide included different sample types (NE,
LGIN, and HGIN), which effectively minimized potential slide effects.
Given the larger area of ESPL samples, each LGIN samplewas subjected
to the selection of 3 to 4 ROIs, including 2 ROIs from the LGIN region
and 1 to 2 ROIs from theNE region. EachHGIN samplewas subjected to
the selection of 2 ROIs from the HGIN region. In contrast, due to the
smaller tissue area of ESCC tissue samples, only one ROI was selected
per patient sample. Ultimately, a total of 11 ROIs for NE, 12 ROIs for
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LGIN, 12 ROIs for HGIN, and 7 ROIs for ESCC were collected and
sequenced using spatial whole-transcriptome profiling. All sequenced
ROIs’ data were incorporated into further analysis. All the samples
were evaluated and confirmed by a pathologist from the Affiliated
Cancer Hospital of Zhengzhou University (Zhengzhou, China). The
samples of this study were approved by the Ethics Committee of the
same institute.Written informedconsentwas providedby eachpatient
before any investigation was conducted.

The FFPE samples underwent dewaxing and hydration following
the DSP standard SOP. Immunohistochemical antigen repair was
conducted using Tris-EDTA buffer and a pressure cooker. Proteinase K
was then incubated with the sample slices to facilitate proteinase
digestion, exposing RNA targets of interest. After 5min of neutral
buffered formalin fixation, the FFPE slices were subjected to the
GeoMx WTA panel (NanoString Technologies) overnight within a
hybridization furnace, shielded from light. Fluorescently labeled
markers (Pan-cytokeratin, CD45, and Syto13) were applied to the FFPE
slices for morphology staining. UV laser dissociation techniques were
employed to generate oligo barcodes from the selected ROIs. These
barcodes were subsequently sequenced and analyzed in the experi-
mentalworkflow.As not all areas of the entire tissuewere ESPL regions,
only tissues from the selected ROIs were sequenced. ROIs were chosen
based on positive Pan-cytokeratin staining and H & E staining to con-
firm NE, LGIN, and HGIN regions of epithelium.

Data processing and analysis
Toaccount for systemandexperimentalbias, aswell as variation inROI
size, individual ROIs’ Digital count conversion (DCC) files were nor-
malized using ERCC RNA spike-in controls before downstream pro-
cessing. This quality control step generated normalization positive
factors from individual ROIs. The ROI inclusion criteria were limited to
a minimum surface area of 1.6 × 104 μm2 for WTA andminimum nuclei
counts of 200. ROIs with normalization positive factors higher than 3
or lower than 0.3 were excluded from downstream analysis. QC-
qualified ROI count files were then normalized by the Q3 (3rd quartile
of all selected targets). Thenormalizeddatawere log-transformedwith
or without beingmedian-centered before comparison and plotting. All
data processing and analysis were performed using DSP analysis
software (GeoMx NGS Pipeline Version 2.0.0.16, GeoMx DSP Control
Center V.2.4.2.2) and R version 4.2.1 with relevant packages. Hier-
archical clustering and correlation matrix were done with “pheatmap”
package (Version 1.0.12). The principal component analysis (PCA) was
conducted by “FactoMineR” (Version 2.8) and “factoextra” (Version
1.0.7) packages. For the differential expression analysis, a non-
parametric Mann-Whitney U test with a significant cut-off p value of
0.05was used. In some cases, due to the limited number of probes and
samples, thep valuewaspresentedwithout adjustment.Other relevant
plots were generated by “ggplot2” package (Version 3.4.2). For func-
tion and pathway annotation and enrichment analysis, differentially
expressed genes (gene symbols) were processed by clusterProfiler52

package (Version 4.6.2).

Machine learning models construction
K-nearest neighbor (knn) is non-parametric and predicts the class of a
test point based on the majority class of its k-nearest neighbors in the
training set. Logistic Regression (logre) is parametric and models the
probability of a binary response variable using a logistic/sigmoid
function. Support Vector Machine (svm) is parametric and can per-
form classification and regression tasks by finding the best hyperplane
to separate different classes in the feature space. Random Forest (rf) is
an ensemble algorithm that combines multiple decision trees to
enhance predictive accuracy and reduce overfitting. Neural Network
Regression (nnet) is a family of parametric algorithms inspired by the
human brain’s neuron behavior. It can handle various tasks, including
regression and classification. Naive Bayes (nbs) is a probabilistic

algorithm suitable for classification tasks, determining class prob-
abilities using Bayes’ theorem based on conditional probabilities.
Decision Trees (rpart) are non-parametric algorithms used for classi-
fication and regression tasks. They recursively divide the feature space
into regions with reduced impurity.

These are the major algorithms used in machine learning. We
adopted these seven machine learning models to evaluate the efficacy
of the prediction model by distinguishing N, L, and M based on co-
DEGs (mlr package, Version 2.19.1). Two significant metrics, logloss
value, and multiclass AUC value, were used to assess the machine
learning algorithms’ performance. Logloss measures the precision of
probability estimates, while multiclass AUC evaluates the algorithm’s
ability to differentiate between multiple classes, providing a compre-
hensive evaluation of overall performance.

Immunohistochemical analysis
Five micrometers FFPE slices were deparaffinized and rehydrated.
Then, slices were immersed in sodium citrate buffer (10mmol/L, pH
6.0) and boiled 90 s for antigen retrieval. Blocked the sections with 3%
H2O2 for 5min. Wash the sections two times in phosphate-buffered
saline (PBS) andnonspecific reactionswere blockedby 10%goat serum
for 1 h at room temperature. Then, tissue sections were incubatedwith
the designated specific primary antibody overnight at 4 °C. On the
second day, tissue sections were incubated with the secondary anti-
body for 30min at room temperature after three times PBS washing.
Then, the tissue sections were incubated with the avidin-biotin-
peroxidase complex for 30min. Followed by washing with PBS, the
antigen-antibody binding was visualized with a DAB stain kit and
counterstained with hematoxylin. Microscopic imaging was per-
formed to capture images of the sample slices, and subsequent semi-
automated counting of positive staining was conducted using digital
image viewing software (version 12.3.2.8013, Aperio Image Scope,
Leica, Germany)53. The immunohistochemical scoring systemwas used
for statistical analysis of the immunohistochemistry results. The
scoring systemassignedpoints basedon the intensity of staining: weak
positive (1 point), positive (2 points), and strong positive (3 points).
The immunohistochemical score (IHC score) was calculated using the
formula: IHC score = weak positive × 1 + positive × 2 + strong
positive × 3.

Immunofluorescence analysis
The Immunofluorescence assay performed on paraffin-embedded
sections commenced with a 2 h baking process at 65 °C, followed by
45min of rehydration. Subsequently, antigen retrieval was conducted
by immersing the slides in antigen retrieval solution and heating them
using a pressure cooker until boiling for 90 s. Thereafter, slides were
washed with distilled water for 5min and blocked with 5% goat serum
for 1 h. An appropriate dilution of CD68 and α-SMA was added, and
slides were incubated overnight at 4 °C. On the second day, slides
underwent two rounds of washes with PBS before adding the corre-
sponding fluorescent secondary antibody (1:500). Incubation occur-
red in the dark at room temperature for 50min, followed by two
additional washes with PBS. Next, the DAPI staining solution (1:100)
was applied, incubated in the dark at room temperature for 3-5min,
and washed twice with PBS. Finally, the slides were sealed with
mounting reagents. Images were acquired through confocal micro-
scopy. Mean fluorescence intensity (AU) was analyzed by Image J
(version 1.53k) software.

Cell culture
KYSE150 cell line was obtained from Cell Bank of Chinese Academy of
Sciences (cat: CBTCCCAS, Shanghai, China). KYSE140, KYSE450,
KYSE510, KYSE30, KYSE70, and KYSE410 were preserved and donated
by Professor Ziming Dong (the Department of Pathophysiology,
school of basic medical sciences of Zhengzhou University). These cell
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lines were validated by STR analysis. Professor Enmin Li (Shantou
University) donated the normal human esophagus immortalized epi-
thelial cell (SHEE)54. Human esophageal squamous cell lines (KYSE140,
KYSE150, KYSE450, KYSE510, KYSE30, KYSE70, KYSE410) were plated
on plastic tissue culture dishes and cultured in RPMI-1640 medium
(Biological Industries) containing 10% fetal calf serum (VivaCell,
Shanghai, China) and 1% penicillin/streptomycin (100 U/ml) in an
incubator at 37 °C with 5% CO2. Human normal esophageal cell SHEE
was cultured using a proprietary medium with a confidential
composition.

Plasmid construction
Candidate genes ORF expression plasmid was constructed by You Bio
Biology Company (Changsha, China). Short hairpin RNAs (shRNA) are
designed and subcloned into PLKO.1 vector. All theplasmidswereused
after being confirmed by sequencing. The primers are listed below:

shTAGLN2: CCGGGAACGTGATCGGGTTACAGATCTCGAGATCTG
TAACCCGATCACGTTCTTTTTG; AATTCAAAAAGAACGTGATCGGGTT
ACAGATCTCGAGATCTGTAACCCGATCACGTTC. shCRNN: CCGGGAG
GAATCAGACAACAGAGATCTCGAGATCTCTGTTGTCTGATTCCTCTTT
TTG; AATTCAAAAAGAGGAATCAGACAACAGAGATCTCGAGATCTCTG
TTGTCTGATTCCTC.

Cell transfection and lentiviral infection
The lentiviral shRNA/ORF plasmid was co-transfected with packaging
vectors (pMD2G and psPAX2) into HEK293T cells using Simple-Fect
transfection reagent (Signaling Dawn Biotech, Wuhan, China). After
transfection, virus particles were harvested at 24 and 48 h and filtered
using a 0.45 µm filter. To establish knockdown stable cell lines, cells
were infected with the designated virus particles along with 8 µg/ml
polybrene. After 24 h, the medium was changed, and the cells were
selected with puromycin. Stable knockdown cell lines were generated
through 2~3 passages. The knockdown and overexpression efficiency
were evaluated by western blot.

Cell proliferation assay and clonogenic formation assay
To assess the impact of candidate genes on cell survival, knockdown
and overexpression cells were seeded in 96-well plates at a density of
2500 cells per well. Cell proliferation was measured using the MTT
method, and absorbance was recorded after 0, 24, 48, and 72 h of
incubation. For the evaluation of cell clonogenic formation ability, 250
viable cellswere seeded in eachwell of a 6-well plate containing 2ml of
culture medium. After one or two weeks of incubation, the colonies
were stained with 0.5% crystal violet, and the number of colonies was
counted for further analysis.

Anchorage-independent cell growth
The knockdown and overexpressed cells weremixed with 0.3% agar to
form a top layer over a base layer of 0.5% agar. The plates were
maintained at 37 °C in a 5% CO2 incubator. The colonies were taken
pictures and counted using Image J (version 1.53k).

Organoid culture and analysis
Esophageal PDX-derived organoids (PDXO) were generated from
esophageal patient-derived xenograft models LEG382 and LEG417
following the protocols outlined by Karakasheva et al.55. The dis-
sociation procedure involves transferring and mincing tumor tissue
followed by incubation with HBSS-DF, with collagenase IV (Thermo,
17104019) and Y-27632 (MCE, HY-10071) additives to enhance single-
cell yields. Subsequently, the tissue fragments were filtered, and the
collected cell suspension was centrifuged and resuspended. Cell den-
sity and viability were evaluated using the Trypan Blue exclusion test.
For PDXO initiation, cells were seeded after the thawing of Matrigel
and pre-warming of the plate and organoid medium. Organoid gen-
eration was carried out in a 6-well plate, where cells are transferred,

centrifuged, and resuspended in Matrigel before dispensed into the
wells. After solidification, the organoid medium was added, and the
organoids were cultivated for 10–14 days.

Lentivirus-mediated transduction of PDXO was conducted fol-
lowing the protocol outlined by Van Lidth de Jeude JF et al.56. The
organoids were transferred into a 48-well plate with a small amount of
medium. The designated lentivirus in transductionmediumwas added
to the well, and to enhance transduction efficiency, spinoculation was
performed by placing the plate containing organoids in a pre-warmed
centrifuge at 32 °C and rotating it at 600 × g for 1 h. Afterward, the
organoid-virus mixture was transferred to a culture incubator and
incubated for 3 h at 37 °C to facilitate transduction. Next, the organoid-
virus mixture was resuspended with culture medium and transferred
to amicrocentrifuge tube. The tubewas then centrifuged at 850× g for
5min to pellet the organoids. The organoids were resuspended and
seeded in a 96-well plate with Matrigel and medium. After 24 h, the
medium was refreshed with 4μg/ml puromycin and incubated for
48 h. Subsequently, themediumwas changed without puromycin, and
images were taken 10 days after transfection. Organoid numbers were
calculated using Image J software (version 1.53k).

PDX model establishment and treatment
Eight-week CB17 SCID female immunodeficient mice were obtained
from Cyagen Biosciences, Inc. (Suzhou, Jiangsu, China). This animal
study was approved by the Ethics Committee of China-US (Henan)
Hormel Cancer Institute (Zhengzhou, Henan, China). The patients
were consented for the generation of patient-derived xenograft and
organoid models. The housing conditions for mice included a 12 h
dark/light cycle, with an ambient temperature maintained at approxi-
mately 24 °C and a humidity level of around 60%. The PDX tumors
were transplanted intomice and the experiment started on the 7th day
after the transplant (showed as day 1). Tumor volume and mice body
weight was measured twice a week and at the same time conducted
intratumor injection of the designated virus (shNC, shTAGLN2, NC, and
CRNN). Tumor volume was calculated according to the following for-
mula: length × width × height × 0.52. On day 46 after euthanizing the
mice, tumors were removed, weighed, and photographed. The study
adhered to the regulations of the ethics committee, and themaximum
allowable tumor volume was set at 1000 mm3. Notably, the tumor
volumes observed in this study did not exceed the specified limit.

RNA isolation and Reverse transcription polymerase chain
reaction (RT-PCR) assay
Total RNA extraction was performed using the FastPure Cell/Tissue
Total RNA Isolation Kit (Vazyme, RC101-01, Nanjing, China). Subse-
quently, cDNA synthesis was carried out utilizing the HiScript III 1st
Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme, R312-01/02,
Nanjing, China). The RT-PCR was conducted using the QuantiNovaTM
SYBRGreen PCR kit (cat. 208052, QIAGEN Sciences, Inc., Gaithersburg,
MD, USA), and specific primers were utilized for the RT-PCR analysis.
Signal analysis was performed using the Applied Biosystems 7500
FAST qPCR system (Thermo Fisher Scientific, Waltham,MA, USA). The
expression of mRNAs was normalized to GAPDH. The primers used in
this study: TAGLN2: TCCAGAACTGGCTCAAGGATGG; TCTGCTCCAT
CTGCTTGAAGGC; KRT16: CTACCTGAGGAAGAACCACGAG;CTCGTAC
TGGTCACGCATCTCA; KRT17: ATCCTGCTGGATGTGAAGACGC; TCCA
CAATGGTACGCACCTGAC; CRNN: GGAGCTGAAAAGACTCTTGGAGC;
CTGTGTGGTCTTCATCCAGCAG; MAL: CCATCACGATGCAAGACGGC
TT; AGAACACCGCATGGACCACGTA; GAPDH: GTCTCCTCTGACTTCA
ACAGCG; ACCACCCTGTTGCTGTAGCCAA.

Western blotting
Cells were collected using a cell scraper on ice and treated with
RIPA lysis buffer to extract cellular proteins. Protein quantification
was performed, and the lysates were denatured with a sampling
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buffer before being loaded onto an SDS-PAGE gel for electro-
phoresis. After separation, the proteins on the gel were transferred
to a 0.45 μm PVDF membrane. The membrane was then incubated
with specific antibodies to target the proteins of interest, and the
bound antibodies were detected using chemiluminescence (ECL)
reagent.

Statistics and reproducibility
Statistical details of experiments and analyses can be found in the
corresponding figure/ supplementary figure legends. In this study,
each experiment was repeated at least three times. Data analysis
was conducted using GraphPad Prism (Version 9.5.0) and R (ver-
sion 4.2.1). P value < 0.05 was considered a statistically significant
difference. The sample size was not predetermined using any
specific statistical method, and no data were excluded from the
analyses.

Illustrations
In the figures, the elements were created using BioRender (https://
biorender.com/) and Procreate software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence data generated in this study have been deposited
in the GSA-Human database under accession code HRA003627. The
raw sequence data are available under restricted access for research
purposes only, access can be obtained by the DAC (Data Access
Committees) of the GSA-human database. According to the guide-
lines of GSA-human, all non-profit researchers are allowed access to
the data, and the Principle Investigator of any research group is
allowed to apply for Controlled-access of the data. The user can
register the GSA database (https://ngdc.cncb.ac.cn/gsa-human/) and
request the data. The approximate response time for accession
requests is about 3 days. The access authority can be obtained for
Research Use Only. The user can also contact the corresponding
author directly. Once access has been approved, the data will be
available to download for 2 months. The remaining data are available
within the Article, Supplementary Information, or Source Data
files. Source data are provided with this paper.

Code availability
The codes for data analysis used in this study are available at https://
github.com/hrcnlab/escc_pipline.
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