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Abstract
Purpose Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are 
believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. 
However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune check-
point inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond 
to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular 
subtypes predisposed to respond to ICI therapies.
Methods We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to 
obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified 
using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 
MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer 
(MSI-EC) patients.
Results High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors 
into “hot”, “intermediate” and “cold” groups according to their distinct immune profiles, a finding highly consistent with the 
corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network 
involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5.
Conclusion Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be 
stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI 
therapeutic efficacy in this subset of patients.

Keywords Mismatch repair deficiency (MMRd) · Immunotherapy · Endometrial cancer · Digital spatial profiling · HLA 
class I · DNMT3A

1 Introduction

Endometrial cancer (EC), as one of the leading gynecologi-
cal malignancies, accounts for over 417,000 new-onset cases 
annually [1]. While most patients show excellent prognosis, 
there are several known factors for recurrent disease, such as 
histological type and grade. In-depth multiomics profiling of 
clinical specimens has revealed distinct molecular subtypes, 
namely, four predominant groups defined by DNA polymer-
ase epsilon mutation (POLEm), mismatch repair protein 
deficiency (MMRd)/microsatellite instability (MSI), copy-
number low and copy-number high [2–4]. Follow-up studies 
have revealed the prognostic value of molecularly stratified 
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subgroups with high-copy-number patients showing dis-
mal progression-free survival and cancer-specific survival, 
whereas the POLEm group exhibits optimal outcomes [5].

Although cumulative evidence highlights the impor-
tance of molecular classification in EC, less is known about 
its MMRd/MSI status with a more miscellaneous nature 
related to the tumor microenvironment (TME). The DNA 
mismatch repair (MMR) system plays an important role in 
maintaining genetic fidelity, and deficiency in this pathway 
increases the risk of multiple cancers [6, 7]. As such, tumors 
with MMRd are characterized by widespread MSI and high 
mutational burden, making them more immunogenetic and 
likely to respond to anti-PD-1/PD-L1 immunotherapy [8, 9]. 
However, despite a high load of neoantigens, patients with 
MMRd exhibit variable responses to immune checkpoint 
inhibitors (ICIs), and over half are resistant to this treat-
ment [10, 11]. Focused studies on ECs have reported similar 
findings [12, 13]. Mechanism-based studies have uncovered 
the bona fide relationship between the degree of MSI and 
its impact on anti–PD-1 immunotherapy [14]. However, in 
MMRd cancers treated with pembrolizumab, the number of 
tumor nonsynonymous mutations is not significantly differ-
ent between responders and nonresponders [9]. These obser-
vations indicate that in addition to hypermutation-mediated 
neoantigens, other factors in MMRd tumors may play roles 
in sensitivity to immune checkpoint inhibitors (ICIs).

More importantly, the dynamic regulation of the TME in 
EC has not been well established. Notably, an ample num-
ber of studies have already demonstrated the importance of 
preexisting CD8 + T cells in the TME for effective ICI inter-
vention, and a lack of T-cell infiltration can make MMRd 
tumors insensitive to this treatment [15–17]. Since a subset 
of MMRd tumors displays a low density of tumor-infiltrating 
lymphocytes (TILs) [18, 19], these highly mutated tumors 
may harbor dysregulated pathways within the TME caus-
ing T-cell retention in peritumor regions. Recently, Vasaikar 
reported a negative correlation between glycolytic activity 
and infiltration of CD8 + T cells in MSI-H colon cancer, 
while Lu’s team demonstrated that deficiency of the cGAS-
STING pathway in MMRd tumors dramatically diminishes 
CD8 + T-cell infiltration, suggesting probable underlying 
mechanisms to facilitate tumorigenesis with high muta-
tional burden [17, 20]. Nevertheless, evidence is still sparse 
in MMRd-EC to address crucial mechanisms associated with 
T-cell infiltration in MMRd tumors, which may aid in the 
identification of predictive biomarkers for ICI as well as in 
the design of new strategies to overcome therapeutic resist-
ance in this subgroup of ECs.

Herein, we applied the digital spatial profiler (DSP), a 
high-plex spatial biology discovery tool, to obtain a high-
resolution TME transcription profile of MMRd-EC [21]. 
Through a comprehensive analysis of over 1,800 key 
tumor immune-related genes in 45 MMRd-EC patients, we 

identified a 14-gene signature in the tumor-specific region 
classifying tumors into “hot”, “intermediate” and “cold” 
groups according to their distinct immune activity and 
CD8 + T-cell infiltration. Additional validation using inde-
pendent clinical cohorts confirmed a tight potential connec-
tion between HLA class I genes and DNMT3A that may be 
predictive of a response to anti-PD-1/PD-L1 therapy. Our 
findings elucidated an existing interpatient heterogeneity 
of MMRd-EC and discovered the key components via a 
dynamic association between HLA class I/DNMT3A expres-
sion and CD8 + T-cell infiltration status. These molecules 
may carry biomarker potential for stratification of MMRd-
EC patients and identification of those likely to benefit from 
ICI treatment.

2  Materials and methods

2.1  Patient sample acquisition and pathological 
evaluation

A total of 653 patients receiving surgical resection for EC 
between 2013 and 2021 were preselected from the pathology 
archive of Sichuan Provincial People’s Hospital with ethical 
approval from an internal committee. Hematoxylin and eosin 
(H&E) staining was performed on formalin-fixed, paraffin-
embedded (FFPE) sections, and pathological diagnosis was 
reviewed by two senior pathologists. Clinicopathological 
information was obtained from electronic medical records. 
Event-free survival (EFS) was defined as the time from 
diagnosis to the time of the first event (disease progression/
relapse or disease-associated death).

2.2  Immunohistochemistry, pathological 
assessment criteria and POLE sequencing

Immunohistochemistry (IHC) was conducted as described 
previously [19]. Staining of mismatch repair proteins 
(MLH1, MSH2, MSH6 and PMS2) was performed on 
all 653 samples, while IHC for PD-L1, HLA class I, and 
DNMT3A was performed on 123 MMRd/MSI samples 
only. CD8 staining was performed on 123 MMRd/MSI 
samples and 123 mismatch repair proficient (MMRp) sam-
ples (tumor grade matched with MMRd samples). MMRd/
MSI was defined as complete loss of nuclear staining of any 
MMR protein in tumor cells with the presence of positive 
internal controls. Tumors with expression of all four MMR 
proteins were defined as MMRp. The density of CD8 + TILs 
was evaluated as the number of CD8 + lymphocytes located 
within the tumor epithelium. For each sample, the average 
count was determined from five randomly selected high-
power fields. PD-L1 expression (clone SP142) in tumor cells 
(TCs) was scored based on the proportion of tumor area 
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occupied by membranous stained TCs of any intensity. Posi-
tive TC expression of PD-L1 was defined as a TC score ≥ 1% 
[22, 23]. To assess the expression of HLA class I, an anti-
HLA class I ABC antibody targeting HLA-A, B and C heavy 
chains was used. HLA class I positivity ( +) was defined 
as > 90% of TCs showing membranous and/or cytoplasmic 
expression; subclonal loss ( ±) was defined as 10–90% of 
TCs showing expression; and negative expression (-) was 
defined as < 10% of TCs showing expression of HLA class 
I [24]. Representative staining patterns of HLA class I are 
shown in Supplementary Fig. 1. DNMT3A expression in 
each case was evaluated using the weighted histoscore 
method, which is based on staining intensity and percentages 
of stained tumor cells [25]. Examples of weak, intermediate, 
and strong staining intensity are shown in Supplementary 
Fig. 2. The histoscore for each case was calculated as fol-
lows: 1 × percentage of cells with weak staining + 2 × per-
centage of cells with intermediate staining + 3 × percentage 
of cells with strong staining. The maximum score is 300. 
Samples with a histoscore of 0 were defined as negative 
expression (-); samples with a histoscore less than 200 were 
defined as weak expression ( +); samples with a histoscore 
equal to 200 were defined as moderate expression (+ +); and 
samples with a histoscore above 200 were defined as strong 
expression (+ + +). POLE sequencing was carried out on all 
MMRd patients using a HiSeq 2500 sequencer at an average 
depth of > 1,000 × .

2.3  Selection of MMRd samples

To select EC patients for spatial profiling, 653 EC samples 
were screened with immunohistochemistry (IHC), and 141 
(21.6%) MMRd tumors were identified according to their 
MMR protein expression status. Patients with neoadjuvant 
chemotherapy prior to surgery or with POLE mutation were 
excluded. Finally, 123 MMRd cases with sufficient tumor 
samples were selected for further study. The clinicopatho-
logical features of the 123 MMRd ECs are summarized in 
Supplementary Table 2. An example of an MMRd tumor 
is shown in Fig. 1A. Out of the 123 MMRd patients, 45 
diagnosed between 2019 and 2021 (cohort 1) were used 
for digital spatial profiling, fluorescent multiplex immuno-
histochemistry (mIHC) and IHC characterization. For the 
remaining 78 EC patients diagnosed between 2013 and 2018 
(cohort 2), only IHC experiments were conducted.

2.4  Spatial transcriptome profiling using digital 
spatial profiling based on TMA

For digital spatial profiling (DSP), two 5 μm TMA (2 mm 
in diameter/core) sections representative of MMRd patients 
in cohort 1 (45 patients diagnosed between 2019 and 2021) 
were deparaffinized and rehydrated, followed by antigen 

retrieval and proteinase digestion following the DSP proce-
dure. For each FFPE block, one 2 mm core from the tumor 
center was selected. Briefly, slides were incubated with the 
Cancer Transcriptome Atlas (CTA) probe set covering over 
1,800 genes (NanoString) and stained with fluorescent mor-
phology markers targeting PanCK (epithelial and tumoral 
regions), CD45 (immune cells), and SYTO-13 (nuclear). 
For each tumor, regions of interest (ROIs) representing 
PanCK + (tumor) and PanCK-/CD45 + (immune-stroma) 
areas were selected. Oligos (barcodes) targeting individual 
transcripts were photocleaved and collected into microwell 
plates for library preparation and sequencing.

2.5  Fluorescent multiplex immunohistochemistry 
(mIHC) and image analysis

Multiplex IHC for Pan-CK, CD68, CD163, CD86, CD4 and 
Foxp3 was performed on TMAs (Supplementary Table 1). 
Slides were deparaffinized and rehydrated following heat-
induced antigen retrieval, blocked with 3%  H2O2 and 3% 
bovine serum albumin (BSA) and then costained with anti-
body panels (Pan-CK, CD68, CD163, and CD86; Pan-CK, 
CD4 and Foxp3). A TSA kit (Recordbio Biological Tech-
nology) was used for signal detection. Slides were scanned 
with a scanner (Pannoramic MIDI: 3Dhistech), and images 
were analyzed via HALO Highplex FL v4.1.3 (Indica Labs).

2.6  Hub gene identification using WGCNA 
and functional enrichment

To leverage the analytical bias potentially associated with 
cutoff-based gene filtering, weighted gene coexpression net-
work analysis (WGCNA) was applied. Tumor ROIs from 
MMRd patients in cohort 1 were selected for analysis. In 
general, 1,539 QC-filtered genes from DSP-CTA profiling 
were used as input. An  R2 of 0.85 was used to determine 
the optimal soft threshold and mean connectivity. Transcrip-
tional modules were then identified using dynamic cut with 
the minimal module containing 30 genes. All regulatory 
modules containing individual gene sets were then applied 
to find possible correlations with levels of CD8 + T-cell 
infiltration predefined as hot and cold according to the den-
sity of CD8 + TILs (cut-off point: 21 CD8 + lymphocytes/
HPF, Supplementary Table 3). Co-clustered samples in the 
middle region defined by the 70-gene signature were then 
defined as intermediate. Most explainable modules were 
selected and filtered by their gene significance and module 
membership. For the resulting gene functional enrichment, 
WGCNA-derived module genes were used, and annotated 
pathway information derived from the Reactome database 
was applied (Supplementary Table 4).
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2.7  Core signature extraction using two‑step lasso 
regression

The WGCNA-derived signature for stratifying MMRd 
ECs into hot, intermediate and cold immune subgroups 
was narrowed down using the lasso regression-based fea-
ture selection method (R package glmnet). In the first 
step, all MMRd tumor ROIs were assigned to either cold 
or “noncold” groups, and leave-one-out cross-validation 

was used to obtain the best lambda for gene feature deter-
mination. In the second step, noncold ROI regions con-
taining hot and intermediate ROIs were used for lasso 
regression using the same strategy, resulting in a final 
gene signature for classifying patients with different 
levels of CD8 + TILs. The gene signature for stratifying 
MMRd-ECs was orthogonally validated using a decon-
volution-based immune cell typing algorithm (R package 
SpatialDecon) [26].

Fig. 1  DSP spatial transcriptomic profiling of MMRd ECs. (A) A 
representative MMRd tumor with loss of MLH1 and PMS2 expres-
sion. The bottom row shows zoomed regions corresponding to the 
green boxes in the upper row. Magnification: 50 times (top) and 200 
times (bottom). (B) A representative case with high CD8 + T-cell 
infiltration. The lower image shows higher magnification of the 
regions in the green box above. Magnification: 5 times (top) and 
200 times (bottom). (C) Comparison of the density of CD8 + TILs 
between MMRd and MMRp tumors. The Mann‒Whitney test 
was used, with p < 0.05 indicating statistical significance. ****, 
P < 0.0001. Error bars indicate  1st and  3rd quartiles. (D) Representa-
tive images of ROIs indicating the tumor area and stromal area. The 
right image shows the segments of these two regions defined by DSP 

automatically. (E) Heatmap showing stratification of MMRd tumors 
into “hot”, “intermediate” and “cold” immune subgroups by the 
WGCNA-derived 70-gene signature. All transcript counts are scaled. 
(F) GO enrichment analysis showing the top 10 pathways of the 70 
genes. (G) Heatmap showing the classification of MMRd tumors 
into the three immune subgroups by the 14 core genes. All transcript 
counts are shown in scaled format. (H) Comparison of the density 
of CD8 + TILs from hot, intermediate and cold tumors stratified by 
the 14-gene signature. The Kruskal‒Wallis test with Dunn's multiple 
comparisons test was used, with p < 0.05 indicating statistical signifi-
cance. **, P < 0.01. Error bars indicate  1st and  3rd quartiles. Abbre-
viations: MMRd, MMR deficiency; MMRp, MMR proficiency; HPF, 
high-power field
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2.8  Cross‑validation of spatial 
transcriptomic‑defined immune subgroups 
using TCGA data

Transcriptome profiling, microsatellite stability data and 
clinical data of endometrial cancers from the TCGA cohort 
(TCGA-UCEC) were downloaded (TCGAbiolinks R pack-
age). Transcription data processing followed the STAR 
method, and upper quartile normalized data were used for 
downstream analysis. The CIBERSORT method was applied 
to the preprocessed transcriptomic data to deconvolute cell 
types and their fractions correspondingly. The 14-gene sig-
nature derived from WGCNA and subsequent two-step lasso 
regression were projected onto the bulk transcriptomic data-
set to obtain a subset expression matrix and used to allocate 
TCGA MSI-H patients into the hot, intermediate and cold 
groups using the parameters from the two-step lasso regres-
sion model.

2.9  Statistical analysis

Statistical analysis was performed with R and GraphPad 
Prism 7. Fisher’s exact test and the chi-square test were 
used for cross-tables. The Mann–Whitney U test and 
Kruskal–Wallis test were used to analyze groups of unpaired 
variables. Pearson correlation analysis was used to meas-
ure the linear correlation between two groups of variables. 
Survival curves were computed using the Kaplan–Meier 
method, and statistical significance was determined using 
the log-rank test. A probability value of p < 0.05 was con-
sidered statistically significant, and two-tailed p values were 
reported for two-group comparisons.

3  Results

3.1  Spatial transcriptomic‑based MMRd patient 
stratification using DSP

We first characterized the four MMR proteins (MLH1, 
PMS2, MSH2 and MSH6) together with CD8 + T-cell infil-
tration levels in ECs using IHC (Fig. 1A). We observed a 
higher level of CD8 + T-cell infiltration in MMRd tumors 
than in MMRp tumors; however, a small proportion of 
MMRd tumors displayed a low density of CD8 + TILs, indi-
cating the heterogeneous nature of MMRd EC (Fig. 1B/C). 
Therefore, we conducted deep spatial profiling of 45 pre-
selected MMRd patients using DSP to identify altered 
transcriptomic programs associated with the level of 
CD8 + T-cell infiltration. By quantitatively analyzing over 
1,800 key immuno-oncology-related genes in a spatially 
directed manner, a deep tumor-immune profile was estab-
lished within the tumor (PanCK +) and stromal (CD45 +) 

regions (Fig. 1D). Subsequently, we applied the WGCNA 
method to find the core transcriptional programs associated 
with tumor regions to resolve the intratumoral heterogene-
ity in MMRd EC. (Supplementary Fig. 3). We identified 
5 modules under an optimal scale-free topology model fit 
with a soft threshold of 8 (Supplementary Fig. 3, A-E). For 
the top modules correlating with CD8 + T cell infiltration 
(module-trait relationship, green and brown modules),  R2 of 
0.38 and 0.36 were achieved (p-value < 0.05, Supplementary 
Fig. 3A). With in those modules, 47 (green module) and 
125 (brown module) genes were identified respectively. We 
then extracted all genes from those modules and applied 
Lasso regression model to select gene features associated 
with tumor infiltration status. From that, a 70-gene transcrip-
tion signature was identified within the MMRd-EC tumor 
regions, which significantly correlated with CD8 + T-cell 
infiltration status (Fig. 1E). Gene ontology GO-based func-
tional annotation illustrated a tight connection of infiltration 
levels with interferon signaling, antigen presentation, phago-
cytosis, TCR signaling and lymphocyte regulation (Fig. 1F). 
This signature perfectly partitioned MMRd ECs into three 
immune subgroups (Fig. 1E): the hot group showed upreg-
ulation of the top 10 pathways (Fig. 1F); the cold group 
showed completely opposite patterns; and the intermediate 
group showed partially upregulated patterns. We then nar-
rowed down genes using a two-step lasso regression, which 
resulted in 14 core genes distinguishing MMRd tumors into 
predefined subgroups (Fig. 1G) [27–29]. Of those patients 
included in the DSP profiling, we compared the density of 
CD8 + TILs across the three immune subgroups stratified by 
the 14-gene signature and observed significant intergroup 
differences, with hot tumors having the highest density of 
CD8 + TILs compared to the other two groups (p = 0.0037, 
Fig. 1H). Nevertheless, there was no significant association 
between the expression pattern and other clinicopathologi-
cal features based on cohort 1 samples (Table 1). We then 
tentatively explored the relationship of the 14-gene sig-
nature with the external TCGA database containing 158 
MSI-H EC patients, and interestingly, we observed that cold 
tumors were significantly associated with a higher pathologi-
cal grade (p = 0.0158) and a more advanced disease stage 
(p = 0.0036, Table 1). Although a high grade and late stage 
are known to be associated with poor prognosis, our 14-gene 
signature failed to stratify MMRd EC patients with regard 
to their EFS based on both the internal cohort and TCGA-
UCEC data (Supplementary Fig. 4). Of these 14 genes, 
DNMT3A was the only gene upregulated in cold tumors 
but downregulated in hot tumors, while the remaining genes 
were consistently upregulated in hot tumors (Fig. 2). Simi-
larly, correlation analysis demonstrated that DNMT3A was 
the only gene negatively correlated with CD8 + T-cell infil-
tration, while the others all showed a positive correlation 
with the density of CD8 + TILs (Supplementary Fig. 5).
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3.2  Spatial profiling of immune infiltration 
of MMRd ECs according to immune subtypes

Upon classifying EC tumors according to their spatial 
transcriptional patterns, we then characterized cell type 
abundance in tumor/stromal areas within the three pre-
defined subtypes (Fig.  3A). Using DSP-deconvoluted 
data, consistent with the results of CD8 IHC staining, hot 
tumors had a significantly higher abundance of CD8 + T 
cells in both tumor and stromal areas than the other two 
groups, which was also accompanied by the simultane-
ous upregulation of macrophages and Tregs (Fig. 3B). 
We then conducted mIHC on these TMAs to evaluate the 
abundance of macrophages and Tregs at the protein level. 
As demonstrated, macrophages were defined as CD68 + ; 
M1-like macrophages were defined as CD68 + CD86 + ; 
M2-like macrophages were defined as CD68 + CD163 + ; 
and Tregs were characterized by the copresence of CD4 
and FoxP3 (Fig. 3 C/D). Digital quantification showed 
that in the tumor area, macrophages (Fig. 3E), includ-
ing M2-like macrophages (Fig. 3F) but not M1-like mac-
rophages (Fig. 3G), were significantly upregulated in hot 
tumors compared to cold tumors. Similarly, in the tumor 
area, hot tumors also exhibited significantly higher infil-
tration of Tregs than cold tumors (Fig. 3H). However, 
stromal analysis did not give the same conclusion with 
statistical significance between hot tumors and cold tumors 
(Supplementary Fig. 6). Overall, the mIHC results further 
consolidated our findings derived from DSP analysis with 
tumor-infiltrated macrophages and Tregs present in the 
transcriptomic-defined hot tumors. To further strengthen 
our findings, we analyzed the cell components of MMRd/
MSI-high ECs from the TCGA cohort (TCGA-UCEC) 
using the CIBERSORT algorithm (Fig. 3 I/J). Consistent 
with data from our study cohorts, external data showed a 
significantly higher abundance of CD8 + TILs, M2 mac-
rophages and Tregs in hot tumors than in cold tumors. The 
discordance of M1-like macrophage ratios between mIHC 

data and TCGA data may be related to the larger sample 
size of the TCGA cohort and bulk data analysis.

Since the migration of immune cells is regulated by 
chemokines, which may potentially correlate with the var-
ying CD8 + T-cell infiltration status of the three immune 
subgroups, we analyzed the expression of a series of 
chemokines in these DSP samples. In tumor regions, the 
expression levels of CCL2, CCL5, CCL20, CXCL9, CXCL10, 
CXCL11 and CXCL12 were generally higher in hot tumors 
than in the other two groups (Fig. 4 A-G). In contrast, in 
the stromal area, only two chemokines (CCL5 and CCL20) 
were upregulated in hot tumors (Fig. 4H-I). We then sought 
to validate this by using TGCA-UCEC data and found that 
compared with the other two groups, hot tumors harbored 
the highest expression levels of CCL2, CCL5, CCL20, 
CXCL9, CXCL10, CXCL11 and CXCL12 (Fig. 4 J-P). Over-
all, these results suggested a probable chemokine-mediated 
recruitment of specific immune cells associated with our 
gene signature-defined immune subtypes.

3.3  HLA class I and DNMT3A as biomarkers 
for classifying cold and hot MMRd‑EC tumors

Since our DSP data highlighted potential connections 
of HLA class I molecule/DNMT3A functioning with 
CD8 + T-cell infiltration, we then validated the result at the 
protein level. Upon characterization of all MMRd tumors 
from cohort 1 and cohort 2 by IHC, a strong positive cor-
relation between HLA class I expression and CD8 + TILs 
was observed, with 50.4% showing HLA class I positivity; 
31.4% of tumors harbored subclonal loss; and 18.2% had 
negative expression. Tumor areas with strong expression 
of HLA class I displayed high infiltration of CD8 + TILs, 
while weaker HLA class I-expressing areas showed a lower 
density of CD8 + TILs (Fig. 5 A/B). Across these MMRd 
cases, HLA class I-positive tumors had significantly 
higher CD8 + T-cell infiltration than HLA class I-negative 
tumors (p = 0.0131, Fig. 5C). The proportion of HLA class 

Fig. 2  Analysis of the expression of the 14 genes according to the 
three immune subtypes and the density of CD8 + TILs. Comparison 
of the expression of HLA-B (A), PAPR9 (B), TNFRSF14 (C), IFI16 
(D), HLA-DMA (E), TYMP (F), TAPBP (G), IRF9 (H), FCER1G 
(I), CD53 (J), CD4 (K), WIPF1 (L), RAC2 (M) and DNMT3A (N) 

in “hot”, “intermediate” and “cold” tumors. The Kruskal‒Wallis test 
with Dunn's multiple comparisons test was used with p < 0.05 indicat-
ing statistical significance. *, P < 0.05, **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001
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I-positive tumors was significantly higher in the hot tumors 
defined by the 14-gene signature (p = 0.0001, Fig. 5D), sup-
porting our previous DSP data with HLA-B positively cor-
related with CD8 + TILs (r = 0.3261, p = 0.0288, Fig. 5D). 
Notably, all PD-L1-positive (TC) cases were also HLA class 
I-positive (Fig. 5E/F), suggesting that HLA class I positiv-
ity may serve as a sensitive biomarker for anti-PD-1/PD-L1 
therapy response. Interestingly, although individual gene-
based survival analysis was not indicative of any prognostic 
value in our cohort 1 study, TCGA data indicated that high 
expression of HLA-B was associated with better EFS in MSI 
ECs, implying a likely prognostic role of HLA-B in predict-
ing MSI EC patient survival (p = 0.0165, Fig. 5G).

For DNMT3A, although IHC data exhibited intrapatient 
heterogeneity in some tumors with different intensities in 
different tumor areas (Fig. 5H), a general trend of high 

CD8 + TILs associated with weak staining of DNMT3A 
was observed and vice versa. We then compared the den-
sity of CD8 + TILs according to DNMT3A staining in ECs 
from our study cohorts and found that tumors with moderate/
strong DNMT3A expression had a significantly lower den-
sity of CD8 + TILs than tumors with negative/weak expres-
sion of DNMT3A based on 123 MMRd ECs (p = 0.0183, 
Fig. 5I). In addition, although not statistically significant, 
survival analysis of TCGA MSI-EC data exhibited a trend 
indicative of the prognostic value of DNMT3A, with higher 
expression associated with worse EFS (Fig. 5J). However, 
regardless of the MSI status, high expression of DNMT3A 
was significantly associated with poorer EFS in the TCGA-
EC cohort (Supplementary Fig. 7). Due to the negative 
association between HLA class I and DNMT3A, we then 
analyzed the mRNA expression of HLA-B and DNMT3A 

Fig. 3  Spatial profiling of immune infiltration of MMRd ECs based 
on three immune subtypes. (A) Identification of 18 types of cells 
in the tumor region and stromal region by DSP. (B) Comparison of 
the abundance of CD8 + memory T cells, macrophages and Tregs 
within tumor regions or stromal regions from “hot”, “intermediate” 
and “cold” tumors in study cohort 1. The Kruskal‒Wallis test with 
Dunn's multiple comparisons test was used with p < 0.05 indicating 
statistical significance. *, P < 0.05, **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001. (C) Representative images showing mIHC staining of 
macrophages and digital quantification by HALO software. The bot-
tom row shows zoomed regions corresponding to the orange boxes 
in the upper row. (D) Representative images showing mIHC stain-
ing of Tregs and digital quantification by HALO software. The bot-
tom row shows zoomed regions corresponding to the orange boxes in 
the upper row. (E) Comparison of the density of macrophages from 
hot, intermediate and cold tumors in study cohort 1. The Kruskal‒
Wallis test with Dunn's multiple comparisons test was used with 
p < 0.05 indicating statistical significance. *, P < 0.05. (F) Compari-

son of the density of M1 macrophages from hot, intermediate and 
cold tumors in study cohort 1. The Kruskal‒Wallis test with Dunn's 
multiple comparisons test was used with p < 0.05 indicating statisti-
cal significance. *, P < 0.05. (G) Comparison of the density of M2 
macrophages from hot, intermediate and cold tumors in study cohort 
1. The Kruskal‒Wallis test with Dunn's multiple comparisons test 
was used with p < 0.05 indicating statistical significance. *, P < 0.05. 
(H) Comparison of the density of Tregs from hot, intermediate and 
cold tumors in study cohort 1. The Kruskal‒Wallis test with Dunn's 
multiple comparisons test was used with p < 0.05 indicating statis-
tical significance. *, P < 0.05. (I) Identification of 22 types of cells 
in the TCGA MSI EC cohort using the CIBERSORT deconvolution 
method. (J) Comparison of the abundance of CD8 + T cells, M1/M2 
macrophages and Tregs from hot, intermediate and cold tumors in the 
TCGA MSI EC cohort. The Kruskal‒Wallis test with Dunn's multi-
ple comparisons test was used with p < 0.05 indicating statistical sig-
nificance. ****, P < 0.0001
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across cohort 1 samples and found that in the tumor area, 
there was a negative correlation between the two genes 
(r = -0.4649, p = 0.0013 Supplementary Fig.  8A). This 
association was also observed in the TCGA cohort, where 
MSI-ECs showed a negative correlation between HLA-B and 
DNMT3A (r = -0.2221, p = 0.0052 Supplementary Fig. 8B). 
Since chemokines play an important role in recruiting T 
cells [30–34], we also analyzed the correlation of DNMT3A 
mRNA expression and chemokines detected in DSP. A neg-
ative correlation between DNMT3A expression and CCL5 
expression was observed (r = -0.3805, p = 0.0099 Supple-
mentary Fig. 8C). We then evaluated the correlation between 
DNMT3A and CCL5 receptors and found that their expres-
sion was also negatively correlated within the tumor regions 
(Supplementary Fig. 8D/E). Moreover, these findings could 
also be validated using TCGA MSI-EC data (Supplementary 
Fig. 8F-H). Taken together, these results suggested that the 

negative correlation between DNMT3A and CD8 + T-cell 
infiltration is associated with the downregulation of HLA 
class I and CCL5.

4  Discussion

MMRd tumors are known to carry high loads of neoanti-
gens, which is believed to be a key biological cause of T-cell 
recruitment and to trigger local immunogenic reactions 
within the TME. These mechanisms generate a predisposi-
tion to checkpoint inhibitor therapy response. Nevertheless, 
cumulative evidence suggests that lymphocyte infiltration 
levels vary significantly across cancer types, a major limiting 
factor in acquiring an optimal response in patients receiv-
ing ICI therapies [9, 17, 35]. In addition, MMRd tumors are 
more sensitive to activated CD8 + T cells and thus respond 

Fig. 4  Analysis of the expression of chemokines according to the 
three immune subtypes. (A-G) Comparison of the expression of 
CCL2, CCL5, CCL20, CXCL9, CXCL10, CXCL11 and CXCL12 in 
the tumor region from “hot”, “intermediate” and “cold” tumors in 
study cohort 1. The Kruskal‒Wallis test with Dunn's multiple com-
parisons test was used with p < 0.05 indicating statistical significance. 
*, P < 0.05, **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (H-I) 
Comparison of the expression of CCL5 and CCL20 in the stromal 

region from hot, intermediate and cold tumors in study cohort 1. 
The Kruskal‒Wallis test with Dunn's multiple comparisons test was 
used with p < 0.05 indicating statistical significance. *, P < 0.05. (J-
P) Comparison of the expression of CCL2, CCL5, CCL20, CXCL9, 
CXCL10, CXCL11 and CXCL12 in hot, intermediate and cold 
tumors in the TCGA MSI EC cohort. The Kruskal‒Wallis test with 
Dunn's multiple comparisons test was used with p < 0.05 indicating 
statistical significance. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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better to ICI therapies than MMRp tumors with the same 
TMB load [17]. Therefore, in addition to TMB, other mecha-
nisms may drive CD8 + T-cell infiltration and response to 
ICI treatment.

Since a subset of MMRd-ECs exhibit a T-cell deprivation 
pattern, we investigated MMRd-EC from a TME perspec-
tive. Using a high-plex spatial transcriptomic approach, a 
highly resolved tumor-immune landscape was established. 
This proved that MMRd-EC is a heterogeneous disease 
and led to the discovery of three immune subtypes at sub-
histological levels specifically within epithelium-enriched 
regions. A 70-gene transcription program was identified 
stratifying patients into hot, intermediate and cold groups, 
which correlated with CD8 + T-cell infiltration, and this 
immune-phenotypic effect was mainly mediated by altered 
antigen presentation, T-cell trafficking, and TCR signaling. 

Further extraction resulted in a 14-gene core signature driv-
ing the transition of inflammation status from cold to hot 
with a corresponding increase in CD8 + T-cell infiltration.

Spatial deconvolution-based immune cell typing also 
supported our finding that the hot subtype had the highest 
infiltration of CD8 + TILs, thereby promoting local cancer 
cell killing [36]. However, evidence from both DSP-based 
deconvolution and mIHC suggested that antitumor effects 
may partially be neutralized by increasing levels of M2-like 
macrophages and Tregs found in hot tumors [36–39]. This 
also explains the limited clinical benefits in both our study 
cohorts and the TCGA cohort, where there was no difference 
in the prognosis of the subgroup with the highly inflamed 
TME compared to the other two MMRd-EC subgroups. Pre-
sumably, this immune normalization may be attributed to the 
dual role of chemokines that recruit both antitumor immune 

Fig. 5  Validation of HLA Class I and DNMT3A as biomarkers for 
classifying cold and hot MMRd-EC tumors. (A) Representative 
images showing the expression of HLA class I in a full section. The 
left and right images show details of the regions indicated by green 
boxes in the middle image. Magnification: 5 times (middle) and 200 
times (left and right). (B) Representative images showing the expres-
sion of CD8 in the full section. The left and right images show details 
of the regions indicated by green boxes in the middle image. Magni-
fication: 5 times (middle) and 200 times (left and right). (C) Com-
parison of the density of CD8 + TILs from “HLA Class I + ”, “HLA 
Class I ± ” and “HLA Class I-” tumors. The Kruskal‒Wallis test with 
Dunn's multiple comparisons test was used, with p < 0.05 indicating 
statistical significance. *, P < 0.05. (D) Comparison of the proportion 
of “hot”, “intermediate” and “cold” tumors according to HLA class 
I status. Chi-square tests were used, with p < 0.05 indicating statisti-
cal significance. **, P < 0.01; ****, P < 0.0001. (E) Representative 
images showing the expression of PD-L1 in the full section. The left 

and right images show details of the regions indicated by green boxes 
in the middle image. Magnification: 5 times (middle) and 200 times 
(left and right). (F) Comparison of the proportion of tumors with 
different PD-L1 staining patterns according to HLA class I status. 
Chi-square tests were used, with p < 0.05 indicating statistical signifi-
cance. *, P < 0.05. (G) Prognostic impact of HLA-B on MSI ECs in 
the TCGA cohort. The log-rank test was applied, with p < 0.05 indi-
cating statistical significance. (H) Representative images showing the 
expression of DNMT3A in the full section. The left and right images 
show details of the regions indicated by green boxes in the middle 
image. Magnification: 5 times (middle) and 200 times (left and right). 
(I) Comparison of the density of CD8 + TILs from HLA Class I + , 
HLA Class I ± and HLA Class I- tumors. The Kruskal‒Wallis test 
with Dunn's multiple comparisons test was used, with p < 0.05 indi-
cating statistical significance. *, P < 0.05. (J) Prognostic impact of 
DNMT3A on MSI ECs in the TCGA cohort. The log-rank test was 
applied, with p < 0.05 indicating statistical significance



High‑plex spatial transcriptomic profiling reveals distinct immune components and the HLA…

1 3

cells and protumor immune cells [32], as in our spatial pro-
filing, hot tumors exhibited the highest expression levels 
of CCL5, CXCL9, CXCL10, CXCL11, CCL2, CXCL12 and 
CCL20, wherein CD8 + T cells can be recruited by CCL5, 
CXCL9, CXCL10 and CXCL11, but CCL5 can also recruit 
tumor-associated macrophages, which can also be recruited 
by CCL2 and CXCL12 [40–44], while Tregs are recruited 
by CCL20 [43, 45, 46].

Of the 14 key genes identified, HLA class I genes 
were major contributors to immune subtype classifica-
tion; therefore, we subsequently assessed key molecules. 
Indeed, the positive correlation between HLA class I and 
CD8 + TILs was observed at the protein level based on 123 
MMRd-EC patients, and TCGA-MSI cohort analysis also 
revealed the prognostic value of this marker. Functional 
HLA class I plays key roles in presenting tumor-associated 
peptides to CD8 + T cells, explaining their regulatory syn-
ergy in a hot TME [47, 48], whereas loss of HLA class I 
expression impairs recognition of tumor-associated anti-
gens by CD8 + T cells, a key mechanism for immune eva-
sion, causing tumor progression and insensitivity to ICI 
therapy [48–51]. Previous studies have shown that loss 
of NOD-Like Receptor C5 (NLRC5), a key transcription 
factor, regulates HLA class I pathway gene transcription 
in multiple cancers and causes reduced expression of its 
target genes, such as HLA class I genes (HLA-A, B, C), 
β2M and TAP [52–54]. This is consistent with our obser-
vation that NLRC5, HLA-A, HLA-B, β2M and TAPBP 
were downregulated in cold tumors (Fig. 1E), suggesting 
a coregulatory network functioning via NLRC5-mediated 
HLA molecule expression. Moreover, since the level of the 
HLA class I complex and its relative components within 
the pathway can be induced by type I/II interferon, our 
results also demonstrated that type I/II interferon pathways 
and key signaling components such as STAT1, STAT2 and 
IRF9 were upregulated in hot tumors [55]. Interestingly, 
our results showed that ECs expressing PD-L1 in ≥ 1% 
of tumor cells were more likely to have fully intact HLA 
class I than PD-L1-negative ECs, a finding consistent with 
a previous report by Friedman et al. [24]. Collectively, 
HLA class I could serve as a promising biomarker for 
MMRd-EC candidate selection in ICI therapies. We also 
noted a negative correlation between DNMT3A expres-
sion and CD8 + T-cell infiltration at both the mRNA and 
protein levels and a tendency toward worse prognosis with 
high DNMT3A expression. In addition, we found that high 
expression of DNMT3A was associated with poorer EFS 
in ECs based on the TCGA-EC cohort (Supplementary 
Fig. 5). Functioning through its DNA methyltransferase 
activity, DNMT3A plays a critical role in epigenetic 
regulation [56]. Overexpression of DNMT3A is associ-
ated with oncogenesis in multiple cancers via epigenetic 
silencing of pivotal tumor suppressor genes and distortion 

of T-cell function [56–59]. The antagonistic modulation 
between DNMT3A and HLA class I in our study and the 
TCGA ECs implies that DNMT3A may be involved in 
epigenetic regulation of HLA class I. Previous studies 
support the notion that inhibition of DNA methyltrans-
ferases causes elevated HLA class I expression in several 
HLA class I low cancer cell lines [60–63], and functional 
restoration by DNA methyltransferase inhibitors is associ-
ated with transcriptomic upregulation of genes in the HLA 
class I antigen presentation pathway [63, 64]. We hypoth-
esized that DNMT3A may also suppress chemokines to 
discharge lymphocytes from evolving tumor regions. 
Our data at spatial transcriptomic and proteomic levels 
revealed negative regulatory feedback between DNMT3A 
and CCL5 as well as its receptors (CCR1 and CCR5), 
resulting in dynamic alteration of CD8 + TILs in a sub-
set of MMRd-ECs. Our study may provide preliminary 
insight linking DNMT3A to CCL5 in ECs, and thus, work 
needs to be extended to address the mechanism by which 
DNMT3A regulates the expression of CCL5 in ECs. In 
summary, our biomarker-driven exploration uncovered a 
new direction in exploring the DNMT3A-mediated func-
tion in regulating HLA class I and chemokines that drive 
CD8 + T-cell infiltration in MMRd-ECs.

In conclusion, our comprehensive spatial profiling 
resolved the interpatient heterogeneity of MMRd-ECs, 
underscoring a plausible patient stratification approach that 
is of clinical importance for ICI therapies. The 14-gene sig-
nature and MHC class I and CD8 IHC may be used as bio-
markers to select candidates for ICI treatment. In addition, 
deconvoluting the underlying mechanism of HLA class I/
DNMT3A/CD8 T-cell modulation in MMRd-ECs will accel-
erate biomarker translation and the development of combina-
tion treatment regimens for advanced EC.
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