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Abstract
Aims: This study aims to reveal a promising biomarker for Parkinson's disease (PD) 
based on research with reverse phase protein array (RPPA) technology for the first 
time and in vivo verification, which gains time for early intervention in PD, thus in-
creasing the effectiveness of treatment and reducing disease morbidity.
Methods and Results: We employed RPPA technology which can assess both total 
and post-translationally modified proteins to identify biomarker candidates of PD in a 
cellular PD model. As a result, the phosphorylation (pY-1248) of the epidermal growth 
factor receptor (EGFR) ErbB2 is a promising biomarker candidate for PD. In addition, 
lapatinib, an ErbB2 tyrosine kinase inhibitor, was used to verify this PD biomarker can-
didate in vivo. We found that lapatinib-attenuated dopaminergic neuron loss and PD-
like behavior in the zebrafish PD model. Accordingly, the expression of ErbB2pY-1248 
significantly increased in the MPTP-induced mouse PD model. Our results suggest 
that ErbB2pY-1248 is a predictive biomarker for PD.
Conclusions: In this study, we found that ErbB2pY-1248 is a predictive biomarker of PD 
by using RPPA technology and in vivo verification. It offers a new perspective on PD 
diagnosing and treatment, which will be essential in identifying individuals at risk of 
PD. In addition, this study provides new ideas for digging into biomarkers of other 
neurodegenerative diseases.
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1  |  INTRODUC TION

Parkinson's disease (PD) is the second most common neurodegener-
ative disorder, which prevalence increases steadily with age.1 Its main 
clinical manifestations are resting tremor, myotonia, postural dysregula-
tion, and bradykinesia.2 In severe cases, PD is accompanied by memory 
impairments and other dementing symptoms.3 The neuropathological 
hallmark of PD is the loss of dopaminergic neurons in the substantia 
nigra and the formation of intraneuronal proteinaceous inclusions, 
called Lewy bodies, which are mainly composed of α-synuclein.4,5 An 
important limitation of PD therapy is the delayed diagnosis and ther-
apy. Biomarkers of PD with high sensitivity and specificity are urgently 
needed to facilitate early diagnosis of PD, detect disease progression, 
and assess response to existing and future treatments.

The gold standard for diagnosing PD is autopsy neuropathology. 
Due to the limitations of studies using the human brain, researchers 
have developed various methods that use both in vivo and in vitro 
experiments to model various aspects of PD. Current experimental 
models of PD are divided into two categories: neurotoxic and ge-
netic.6 PD neurotoxic model mainly induced by MPTP or 6-OHDA. 
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one com-
mon neurotoxin used in generating animal PD models. MPTP en-
ters the brain, converted to the toxic 1-methyl-4-phenylpyridinium 
(MPP+).7 MPP+ reduces dopamine synthesis by inhibiting the activity 
of tyrosine hydroxylase (TH) in neurons.8 The pathology of PD is 
characterized by the loss of dopaminergic neurons in the substantia 
nigra due to oxidative stress and partially susceptible genes leading 
to a lower dopamine level. This lowering in dopamine level further 
contributes to the characteristic motor impairments. Several studies 
have supported the role of dopamine in PD.9,10 6-hydroxydopamine 
(6-OHDA) can be actively taken into the cell by membrane trans-
porters on dopamine neuronal terminals or soma, which selectively 
act on dopaminergic neurons, leading to neuronal degeneration and 
death, causing PD symptoms. 6-OHDA is usually used in a cellular 
model for PD research and is widely used in anti-PD drug screen-
ing studies. It has been reported that PD-related genes, including 
SNCA, LRRK2, PINK1, PARKIN, and DJ-1 are used in the generation 
of transgenic animal PD models.11,12 Studies have shown that Pink1 
knockout mice induce symptoms, which is similar to PD penitents, 
including dopamine reduction and decreased locomotor activity.13 In 
addition, induced pluripotent stem cells (iPSCs) from marmosets with 
the G2019S mutation in the LRRK2 gene show PD-like symptoms.14

Given the structural similarities between the zebrafish dopamine 
neuron system and the human striatum, zebrafish has become an 
excellent model for neurodegenerative and neuropharmacological 
studies.15,16 Some studies applied the MPTP-induced zebrafish PD 
model to characterize PD-like cognitive deficits by assessing spa-
tial working memory and spontaneous alternation behavior.17,18 
MPTP-induced zebrafish PD model is used to study the mitochon-
dria function in the berberine's neuroprotective activity.19 It has 
been reported that Ganoderma lucidum extracts and curcumin 
could improve motor impairments and reduce dopaminergic neuron 
loss by using the mouse PD model.20,21 SH-SY5Y cells are human 

neuroblastoma cells with many features of neurons, which have 
been widely used as dopaminergic neuronal model cells for PD re-
search.22–25 6-OHDA-induced neurotoxicity on SH-SY5Y cells is 
considered the most widely used in vitro model that causes an accu-
mulation of reactive oxygen species near the cells themselves that 
mimics dopaminergic striatal neurodegeneration in PD.26–29

ErbB proteins belong to subclass I of the receptor tyrosine kinase 
superfamily. There are four members of the ErbB family: ErbB1/HER1, 
ErbB2/Neu/HER2, ErbB3/HER3, and ErbB4/HER4. Ligand binding 
to ErbB receptors induces the formation of receptor homo-and het-
erodimers and the activation of intrinsic kinase domains, leading to 
the phosphorylation of specific tyrosine residues within the cytoplas-
mic tail. These phosphorylated residues serve as docking sites for a 
range of proteins whose recruitment activates intracellular signaling 
pathways.30–32 ErbB2 has several autophosphorylation sites, including 
tyrosines1248, 1221, 1222, 1139, 1196, and 1112. Phosphorylation at 
these sites may reflect ErbB2 activity.33 One of the most widely stud-
ied phosphorylation sites is tyrosine1248, the only site for which an 
antibody is established to be stable in human tissues.34–38 Lapatinib is 
a small-molecule tyrosine kinase inhibitor of ErbB1 and ErbB2, which 
can reversibly inhibit ErbBs, blocking their phosphorylation.39,40 It has 
been reported that dysregulation of the ErbB system may contribute 
to the pathogenesis of many brain disorders, including Alzheimer's dis-
ease, epilepsy, and PD.41,42 Studies also have shown the association 
between variants of the ErbB2 gene with PD.43

Reverse phase protein array (RPPA) has emerged as an effective 
high-throughput method for targeted proteomics, allowing quan-
tification of protein expression profiles in large sample sets while 
requiring shallow biological sample volumes.44 This technique can 
be applied to many fields, including quantitative protein profiling 
of cells or tissues, drug screening, and target studies, pharmacody-
namic analysis, and personalized therapy. Notably, RPPA is particu-
larly useful for identifying biomarkers of diagnostic, prognostic, and 
therapeutic responses.45–48

In this study, we employed RPPA to predict the potential bio-
markers of PD, followed by in vivo validation. Our study revealed a 
promising biomarker for PD, which provides a new way to detect PD 
at an early stage as well as is essential for improving diagnosis and 
helping monitor disease progression.

2  |  MATERIAL S AND METHODS

2.1  |  Animals and maintenance

According to standard procedures, wild-type AB zebrafish and the 
transgenic zebrafish vmat2: GFP were maintained. Adult zebrafish 
were maintained at a constant temperature of 28.5°C on a constant 
photoperiod (14 h bright/10 h dark). The water was circulated con-
tinuously, feeding twice a day with commercial flake fish food sup-
plemented with live brine shrimp. Zebrafish embryos were obtained 
from the natural mating of adult zebrafish and raised and maintained 
in an incubator at 28 ± 0.5°C.
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    |  3JIN et al.

Male C57BL/6 mice (age 8 weeks, weighing 20–30 g) were pur-
chased from Jiangsu Huachuang Xinnuo Pharmaceutical Technology 
Co., Ltd and were housed in a temperature and humidity-controlled 
environment with a 12/12 h light/dark cycle. After 1 week of accli-
mation, mice were randomized into two groups: the Ctl group and 
the MPTP group. Mice were intraperitoneally injected with 30 mg/
kg/day MPTP (dissolved in 0.9% saline) for seven consecutive days 
to establish a mouse PD model.

2.2  |  Cell culture and treatment

SH-SY5Y cells were cultured in DMEM medium supplemented with 
10% fatal bovine serum (C04001500, VivaCell Bioscience) and 1% 
penicillin–streptomycin (C3420-0100, VivaCell Bioscience) in an 
incubator containing 5% CO2 at 37°C. For the following experi-
ments, cells were divided into the following groups and treated for 
6 h: Control (Ctl) group (medium only), and 6-OHDA-treated group 
(1 mM).

2.3  |  RPPA analysis

Cells from different groups were collected in cold RIPA lysis buffer 
(P0013B, Beyotime Biotechnology) containing a 0.1% protease in-
hibitor cocktail (HY-K0010-1, MCE). After centrifuging at 11000g 
for 30 min at 4°C, supernatants were collected. Protein concentra-
tion was quantified with a pierce BCA protein assay kit (P0010S, 
Beyotime Biotechnology) and samples were adjusted to 1.5 μg/μL. 
Briefly, samples were manually diluted in five serial twofold dilu-
tions with lysis buffer. They were then printed on nitrocellulose-
coated slides using an Aushon Biosystems 2470 arrayer. Slides were 
probed with validated primary antibodies, followed by incubation 
with each of the secondary antibodies Biotin conjugated-Goat anti-
Rabbit IgG (E0432, Agilent), Goat anti-Mouse IgG (E0433, Agilent). 
The signal was amplified using a Dako Cytomation-catalyzed avidin-
biotin-peroxidase system. Stained RPPA slides were scanned using 
TissueScope LE120 (Huron Digital), generating signal intensities. 
The SuperCurve software then processed the spots of all horizontal 
samples on the slides to evaluate the total protein amount present 
in the spotted samples. Finally, the median polish method is used 
to correct the protein measurements for loading. A quality control 
classifier assessed RPPA slide quality in the R package ‘SuperCurve’. 
Only slides with a quality score above 0.6 (range: 0–1) were retained 
for further analysis.

2.4  |  Western blot

The desired protein samples were from SH-SY5Y cells and mouse 
brains. The protein concentration was measured by a BCA assay 
kit. The protein was denatured at 100°C for 5 min in the 5 × SDS–
PAGE loading buffer (WB-0091, Beijing DingGuo ChangSheng 

Biotech. Co. Ltd.). Then the equal amount of protein was subjected 
to 12% SDS–PAGE gel electrophoresis and transferred onto NC 
membranes. After blocking with 5% skim milk in TBST for 2 h at 
room temperature, membranes were incubated overnight at 4°C 
with primary antibodies against β actin (1:5000, A5441, Sigma), 
ErbB2pY-1248 (1:1000, AF1768, R&D Systems), ErbB2 (1:400, sc-
377,344, Santa Cruz Biotechnology), and ErbB1 (1:400, 2232S, 
Cell Signaling Technology). The next day, these membranes were 
incubated with second antibodies, anti-mouse (1:5000, ZB-2305, 
Beijing ZhongShan JinQiao Biotechnology) and anti-rabbit (1:5000, 
ZB-5301, Beijing ZhongShan JinQiao Biotechnology) at room tem-
perature for 2 h after being washed three times with 1 × TBST. After 
being washed three times with 1 × TBST for the membranes, the im-
munoreactivity bands were visualized using chemiluminescent HPR 
substrate (P90719, Millipore). The grayscale value of proteins was 
calculated and analyzed using Image-J software.

2.5  |  Dopaminergic neurons length measurement

After being treated with MPTP (50 μM, HY-15608, MCE) from 24 
to 96 hours post-fertilization (hpf) or 6-OHDA (250 μM, HY-B1081A, 
MCE) from 48 to 96 hpf, the transgenic zebrafish vmat2: GFP was 
placed under stereo fluorescence microscope (Zeiss), and the devel-
opment of dopaminergic neurons was recorded. Siz zebrafish larvae 
were randomly selected for each group.

2.6  |  PD-like behavior recording

After being treated with drugs for 120 h, the wild-type AB zebrafish 
larvae were transferred to 48 well plates with 1 mL aquarium water 
for acclimatization for 10 min in ZebraBox. The locomotion activi-
ties of each larva from different experimental groups were recorded 
immediately by the Zeblab video-tracking system (Viewpoint) for 
20 min. The measurements were repeated three times, each with six 
animals per group, and analyzed by Zeblab software (Viewpoint).

2.7  |  Rotarod test

Mice were placed on an accelerating rotating rod with a speed in-
creased from 1 to 50 rpm. It gradually increased during the trial at 
a rate of 0.1 rpm/s. Each mouse underwent three test trials. The ex-
periment was considered complete after the mouse slipped off the 
path or when 5 min had passed. The motion test data is taken as the 
average of the three test drop times.

2.8  |  Statistical analysis

All the data were analyzed using Graph Pad Prism 7.0 (GraphPad 
Software) and presented as the mean ± standard error of the mean 
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(SEM). Data sets were tested for normality of distribution with the 
Shapiro–Wilk test and all data exhibited normal distribution. T-test 
was performed for comparisons between the two groups. A one-
way ANOVA test was applied for comparisons among multiple 
groups, followed by either Fisher's LSD or Tukey's post hoc test. If 
the p < 0.05, the difference was considered significant.

3  |  RESULTS

3.1  |  Identification of Significantly Differentially 
Expressed Proteins

6-OHDA is a neurotoxin to dopaminergic neurons commonly used 
to induce experimental parkinsonism.49,50 To explore the potential 
biomarkers of PD, we established a cellular PD model and collected 
cells for RPPA analysis (Figure 1A). The principal component anal-
ysis (PCA) plot (Figure 1B) indicated that the first principal com-
ponent (67.4%) separated the Ctl and 6-OHDA samples, revealing 

that the proteins in these two groups are different. Expression 
values of the Ctl and 6-OHDA samples have been visualized as 
heatmaps (Figure 1C, p < 0.05). There were 305 differentially ex-
pressed proteins between the Ctl and 6-OHDA-treated groups, 
among which there were 106 significantly differentially expressed 
(SDE) proteins, including 44 upregulated proteins and 62 down-
regulated proteins (Table  S1). Among them, AktpS473, PDK1ps241, 
mTORpS2448, and ErbB2pY-1248 play important roles in the patho-
genesis of PD.51–54

3.2  |  GO and KEGG Analysis of SDE Proteins

GO analysis was performed to investigate these SDE proteins' 
functional properties. Among the 45 GO terms which derived the 
features in the optimal feature set, 15 terms turned out to describe 
molecular functions (MFs), 15 terms are associated with cellular 
components (CCs), and 15 terms are involved in biological processes 
(BPs) (Figure 2). In the GO analysis, SDE proteins that are categorized 

F I G U R E  1  Reverse phase protein 
array (RPPA) analysis of 6-OHDA induced 
cellular Parkinson's disease (PD) model. 
(A) The experiment is divided into two 
groups, one is the 6-OHDA group and 
the other is the Ctl group. SH-SY5Y 
cells were treated with 6-OHDA for 
6 h, then collected for RPPA analysis. 
(B) In the principal component analysis 
diagram, each point represents a single 
sample. Proteins with similar significantly 
differentially expressed (SDE) are 
distributed together, while proteins with 
different SDE are scattered. (C) Based 
on SDE proteins, clustering analysis 
was shown in Heatmap. Each column 
represents one group of samples (abscissa 
is the sample information) and each 
row represents one protein (ordinate is 
the significant differentially expressed 
protein), where red areas represent 
up-regulation of protein expression, and 
green areas represent down-regulation of 
protein expression.
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in the MF ontology are mainly annotated to the terms response to 
transmembrane receptor protein tyrosine kinase activity, growth 
factor binding, et al. The CC terms were apical part of the cell, cell-
substrate junction, focal adhesion, et al. The BP annotated terms 
primarily consisted of response to insulin, TOR signaling, peptidyl-
serine phosphorylation, et al.

To get a more specific understanding of the relevant pathways 
responsible for the SDE proteins, KEGG analysis was performed. 
The top 20 significant enrichment pathways with the highest pro-
tein counts were presented in Figure 3, implying that these signaling 
pathways regulate PD. The main KEGG pathways were P13K Akt sig-
naling pathway, EGFR tyrosine kinase inhibitor resistance, focal ad-
hesion, HIF-1 signaling pathway, and ErbB signaling pathway. Among 
them, the ErbB signaling pathway has been reported to play a piv-
otal role in PD. Considering findings obtained from the RPPA study, 
including top SDE proteins (with post-translational modifications), 
GOs, and KEGG pathways, ErbB2pY-1248 possibly acts as a potential 
biomarker of PD.

3.3  |  Validation of ErbB2pY-1248 as a biomarker 
candidate for PD

To verify the important roles of ErbB2pY-1248 in PD revealed by 
RPPA analysis, we carried out a western blot to test the protein 
expression of ErbB2pY-1248, ErbB2, and ErbB1. There was a sig-
nificant increase in the protein expression of ErbB2pY-1248 in the 
6-OHDA group when compared to the Ctl group (Figure  4A,C). 
The total protein levels of ErbB2 and ErbB1 showed no appar-
ent change in the 6-OHDA group compared with that of the Ctl 
(Figure 4A,B,D,E). The original images of each cropped gel/blot are 
provided in Figure S1.

3.4  |  Further verification of ErbB2pY-1248 by 
zebrafish and mouse model

By using the zebrafish PD model, we further verify the potential of 
ErbB2pY-1248 as a PD biomarker. Lapatinib, a tyrosine kinase inhibitor 
of ErbB2, was used in this study. Zebrafish dopaminergic neurons 
are entirely developed by 96 hpf.55 To investigate whether lapatinib 
reverses PD-like symptoms in zebrafish, we assessed the dopaminer-
gic neurons. Compared with the Ctl group, the dopaminergic neuron 

F I G U R E  2  GO enrichment analysis of SDE proteins. It divided 
the function of SDE proteins into three parts: (A) molecular 
function (MF), (B) cellular component (CC), and (C) biological 
process (BP). The results of the GO analysis showed that the 
process involved 15 MF, 15 CC, and 15 BP. The size of the node 
represents the number of enriched SDE proteins. The p value is 
represented by a color scale, where the statistical significance 
increases as red turns to green.
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length in the MPTP-treated group was significantly decreased, 
while lapatinib reversed this decrease to the normal (Figure 5A,B). 
Similarly, we found that 6-OHDA exposure significantly decreased 
the length of dopaminergic neurons, while lapatinib and 6-OHDA 
co-treatment revealed a remarkable increase (Figure 5C,D).

MPTP could induce locomotor retardation manifested in zebraf-
ish as decreased velocity.56,57 As expected, compared with the Ctl 
group, the total distance and average velocity traveled by zebrafish 
in the MPTP-treated group were significantly decreased, which was 
consistent with the previous findings.19 In contrast, lapatinib and 
MPTP co-treatment reversed this decrease, which suggested that 
lapatinib alleviated MPTP-induced suppression of the locomotor 
capacity of zebrafish (Figure  6A,B). Similarly, the behavioral tests 
of zebrafish larvae at 5 dpf showed remarkable differences in the 
total distance and average velocity traveled between the 6-OHDA 

and Ctl groups. Larval zebrafish exposed to 6-OHDA exhibited an 
apparent decrease in locomotor activity, while lapatinib treatment 
significantly increased the total distance and average velocity 
moved (Figure  6C,D). In brief, lapatinib blocked the phosphoryla-
tion of ErbB2, reversing zebrafish PD-like symptoms, which implied 
that ErbB2 phosphorylation is essential for PD development and 
progression.

To further confirm the ErbB2pY-1248 role in PD, we investigated 
the protein expression of ErbB2pY-1248 in the brain of the mouse PD 
model. MPTP-induced PD mouse exhibited a dramatic decrease in 
the latency to fall in the PD group (30.06 ± 5.59) compared with 
the Ctl group (121.44 ± 15.29). In addition, the protein expres-
sion of ErbB2pY-1248 significantly increased in the mouse PD model 
(Figure 7A,B). The original images of each cropped gel/blot are pro-
vided in Figure S2.

F I G U R E  3  The top 20 pathways were 
obtained from KEGG pathway analysis. (A) 
The X-axis is the ratio of the number of 
SDE proteins enriched in the pathway to 
the number of proteins annotated in the 
pathway. Y-axis shows the KEGG pathway 
items. (B) Pathway relationship network. 
The nodes represent pathways enriched 
by SDE proteins. The size of the dots in 
the graph indicates the number of SDE 
proteins enriched in the pathway. The 
color indicates the significant p value of 
the pathway.
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4  |  DISCUSSION

PD is the second most common neurodegenerative disease after 
Alzheimer's disease, affecting approximately 1% of the global pop-
ulation.58,59 PD is now considered a systemic disease more than a 
complex motor disorder because its non-motor symptoms usually 
precede clinical motor signs.60 There are still no effective strategies 
to stop the progression of this disease. Therefore, there is an urgent 
need to explore new effective therapeutic targets, especially in the 
early stages of PD. Although various studies have been conducted to 
discover potential PD candidate biomarkers, only a few biomarkers 
have been translated into clinical practice.61,62

RPPA is an antibody-based proteomics technique suitable for an-
alyzing protein levels and post-translational modifications, including 

phosphorylation.63–65 It has been widely used to discover disease bio-
markers and study molecular mechanisms.45,66,67 Although RPPA is 
commonly used in cancer research, its advantages of detecting several 
hundred proteins in a cost-effective, sensitive, and high-throughput 
manner expand its usage. For example, the RPPA platform has the 
potential for translational applications by discovering and validating 
epigenetic states as therapeutic targets and biomarkers.68 Here, we 
used RPPA technology to predict PD biomarkers for the first time. 
Our study identified 106 SDE proteins, including ErbB2pY-1248. ErbB2 
signaling contributes to the pathogenesis of PD.42,69,70 It has been re-
ported that ErbB signaling displays a neurotrophic and neuroprotec-
tive role in dopaminergic neurons in PD animal models.71 In addition, 
it has been shown that ErbB2 is a hub protein of the PD-specific PPI 
network, suggesting that ErbB2 is a potential regulator of PD.53

F I G U R E  4  Western blot analysis of 
ErbB2pY-1248, ErbB2, and ErbB1 in cellular 
PD model. (A, C) Representative images 
of western blot of ErbB2pY-1248, ErbB2, 
and ErbB1 in extracted protein lysates 
from SH-SY5Y cells treated with 6-OHDA 
for 6 h. (B, D) Grayscale value analysis of 
the immunoblots. The band intensity of 
ErbB2pY-1248 and ErbB1 were normalized 
to ErbB2 and β-Actin, respectively. It is 
presented as mean ± SEM. ***p < 0.001 
vs. Ctl.

F I G U R E  5  Effects of lapatinib on 
the length of dopaminergic neurons in 
zebrafish PD model. (A, C) Representative 
fluorescence images of vmat2: GFP 
zebrafish. Dopaminergic neurons are 
indicated in red brackets and display 
enlarged images to improve the 
visualization of dopaminergic neurons 
morphology. Scale bar, 100 μm. (B, 
D) Statistical analysis of the length 
of dopaminergic neurons from each 
experimental group (n = 6, ***p < 0.001 vs. 
Ctl; ###p < 0.001 vs. MPTP or 6-OHDA).
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The GO analysis revealed that the SDE proteins are significantly 
associated with transmembrane receptor protein tyrosine kinase 
activity, intrinsic apoptotic signaling pathway, mitochondrial outer 
membrane, and growth factor binding. In addition, KEGG analysis 
revealed that the SDE proteins were mainly enriched in the P13K 
Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, 
HIF-1 signaling pathway, and ErbB signaling pathway. All findings 
from the above GO and KEGG analyses are consistent with the 
previous PD-related studies,51,72,73 suggesting that the RPPA tech-
nology used here is reliable. Our study provides a promising way to 
explore biomarkers of neurodegenerative diseases. We found that 
the ErbB2 signaling is a critical pathway involved in PD, which was 
in line with the reported studies.43,74,75 Accordingly, western blot 
results showed that ErbB2pY-1248 protein expression was dramati-
cally upregulated in the cellular PD model. In contrast, there was 
no apparent change in the protein expression of ErbB1 and ErbB2. 
It has been reported that ErbB1 and ErbB2 are mainly expressed 
in the heart and cancerous tissues, with low expression in mouse 
brains.76 We found that ErbB2pY-1248 protein expression was signifi-
cantly higher in the mouse PD model compared with the Ctl group, 
which further confirmed that ErbB2pY-1248 could be the biomarker 
of PD. Phosphorylation of proteins acting as a disease biomarker 
has been widely reported.77–82 For example, plasma tau phosphor-
ylated at threonine 217 (p-tau217) and 181 (p-tau181) is associated 
with Alzheimer's disease pathology.80 Site-specific phosphorylation 
and caspase cleavage of glial fibrillary acidic protein (GFAP) are new 

biomarkers of Alexander's disease.81 It has been reported that the 
enhanced phosphorylation of c-Jun in response to cisplatin treat-
ment could be a promising biomarker for the efficacy of cisplatin in 
patients.82 All the above findings imply that the phosphorylation (at 
tyrosine 1248) of ErbB2 could be a biomarker for PD.

The intracellular carboxyl terminus of ErbB2 contains tyrosine 
residues that serve as phosphorylation sites for the kinase. ErbB2 
contains five major tyrosine autophosphorylation sites. PY1248 
is one of the C-terminal sites phosphorylated before downstream 
signaling occurs.83–85 In the case of overexpression, ErbB2pY-1248 is 
the most potent site because it is constitutively activated due to 
ErbB2 homodimerization.86 In addition, among the multiple ErbB2 
tyrosine phosphorylation sites, pY1248 has been documented to be 
biologically meaningful and clinically significant. Cell culture data 
previously showed that tyrosine phosphorylation at ErbB2pY-1248 
plays a role in the negative regulation of ErbB2-coupled signaling.87 
Phosphorylation at the 1248 site prompts ErbB2 to connect with 
the Ras–Raf-MAPK signaling pathway.88 Therefore, we predicted 
that ErbB2pY-1248 might be a biomarker for the early diagnosis of PD.

Zebrafish are widely used in the study of PD pathogenesis be-
cause of their rapid life cycle and close genetic similarity to humans. 
MPTP or 6-OHDA exposure is a well-established animal PD model 
commonly used in zebrafish to induce PD.89,90 Zebrafish exhibit in-
jured dopaminergic neurons and altered locomotor activity when 
exposed to MPTP or 6-OHDA.91,92 In the current study, zebrafish 
treated with MPTP or 6-OHDA induced an apparent decrease in the 

F I G U R E  6  Effects of lapatinib on 
locomotion impairments in zebrafish PD 
model. (A, C) Total distance traveled by 
zebrafish. Red, green, and black lines 
depict fast, medium, and slow movement. 
***p < 0.001 vs. Ctl group; ###p < 0.001 vs. 
MPTP or 6-OHDA, motion track (n = 20). 
(B, D) The average speed of zebrafish was 
taken every 60 s from different groups.
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length of dopaminergic neurons and locomotor activity, which were 
consistent with the previous research that MPTP or 6-OHDA could 
induce PD-like behavior in a zebrafish model.19,93 Notably, lapati-
nib could reverse this decrease to the normal level. These findings 
further demonstrate that phosphorylation of ErbB2 plays an im-
portant role in the pathogenesis of PD, thus providing support that 
ErbB2pY-1248 is a promising biomarker of PD.

Future studies are necessary to be performed to validate the 
sensitivity and specificity of ErbB2pY-1248 as a PD biomarker and con-
firm its high correlation with disease development and progression. 
IPSCs technology is a promising tool to support the clinical appli-
cation of ErbB2pY-1248, which can efficiently generate iPSCs from 
readily available tissues, differentiating into CNS-specific cells.94–96 
Long-term survival and function of dopaminergic neurons derived 
from autologous human iPSCs have been reported in non-human 
primate models of PD.97,98 In the future, iPSCs might be applied to 
PD diagnosis by using ErbB2pY-1248 as a PD biomarker.

5  |  CONCLUSION

Although PD biomarker candidates have been reported, such as 
α-syn, uric acid, and glutathione, biomarker applications remain 
limited. In this study, we found that ErbB2pY-1248 is a predictive bio-
marker of PD by using RPPA technology and in vivo verification. It 
offers a new perspective on PD diagnosing and treatment, which 
will be essential in identifying individuals at risk of PD. In addition, 
this study provides new ideas for digging into biomarkers of other 
neurodegenerative diseases.
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