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A B S T R A C T   

Aims: DNA damage repair (DDR) plays a pivotal role in hepatocellular carcinoma (HCC), driving oncogenesis, 
progression, and therapeutic response. However, the mechanisms of DDR mediated immune cells and immuno- 
modulatory pathways in HCC are yet ill-defined. 
Methods: Our study introduces an innovative deep machine learning framework for precise DDR assessment, 
utilizing single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Single-cell RNA sequencing data were 
obtained and in total 85,628 cells of primary or post-immunotherapy cases were analyzed. Large-scale HCC 
datasets, including 1027 patients in house together with public datasets, were used for 101 machine-learning 
models and a novel DDR feature was derived at single-cell resolution (DDRscore). Druggable targets were pre-
dicted using the reverse phase protein array (RPPA) proteomic profiling of 169 HCC patients and RNA-seq data 
from 22 liver cancer cell lines. 
Results: Our investigation reveals a dynamic interplay of DDR with natural killer cells and B cells in the primary 
HCC microenvironment, shaping a tumor-promoting immune milieu through metabolic programming. Analysis 
of HCC post-immunotherapy demonstrates elevated DDR levels that induces epithelial-mesenchymal transition 
and fibroblast-like transformation, reshaping the fibrotic tumor microenvironment. Conversely, attenuated DDR 
promotes antigen cross-presentation by dendritic cells and CD8+ T cells, modulating the inflammatory tumor 
microenvironment. Regulatory network analysis identifies the CXCL10-CXCR3 axis as a key determinant of 
immunotherapeutic response in low DDR HCC, potentially regulated by transcription factors GATA3, REL, and 
TBX21. Using machine learning techniques by combining bulk RNA-seq data in house together with public 
datasets, we introduce DDRscore, a robust consensus DDR scoring system to predict overall survival and resis-
tance to PD-1 therapy in HCC patients. Finally, we identify BRAF as a potential therapeutic target for high 
DDRscore patients. 
Conclusion: Our comprehensive findings advance our understanding of DDR and the tumor microenvironment in 
HCC, providing insights into immune regulatory mechanisms mediated via DDR pathways.   
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1. Introduction 

Genomic instability caused by defects in DNA damage repair (DDR) 
is regarded as an important hallmark in multiple cancers [1,2]. Previous 
clinical trials have revealed the combinatory benefit of cisplatin with 
radiation therapy to achieve longer progression-free survival (PFS) by 
three years in patients with locally advanced uterine cervical or vaginal 
cancers [3]. Mechanistically, DDR influences multiple aspects of tumor 
immunogenicity, including tumor cell-autonomous responses and tumor 
cell–microenvironment interactions. The efficacy of anti-programmed 
death 1 (anti-PD1)/anti-programmed death ligand 1 (anti-PD-L1) im-
mune checkpoint inhibitors (ICI) in treating mismatch repair 
(MMR)-deficient (MMRd) tumors regardless of histology, already sets 
the function of such interplay [4,5]. More recently, targeting the DDR 
pathway has been proposed as a promising therapeutic strategy to 
induce anti-tumor immunity [6–8]. This led to a few exploratory clinical 
trials to evaluate potentials of incorporating DNA-damaging or 
DDR-targeting agents with ICI [9]. DDR inhibitors combined with 
immunotherapy have garnered a growing amount of interest. In prin-
ciple, DDR inhibition activates the STING/TBK1/IRF3 innate immune 
pathway, increasing CXCL10 and CCL5 levels in turn evoking cytotoxic 
T cells to eradicate malignant cells [10]. Supporting evidence from 
clinical trials involving ICI treatment have further revealed DDR-related 
biomarkers to potentially predict ICI response [11]. Therefore, eluci-
dating the alterations and interaction mechanisms of DDR pathway 
genes is of great significance in exploring the role of DDR in cancer 
therapy. 

In recent years, mutational landscapes established on hepatocellular 
carcinoma (HCC) via whole-genome sequencing (WGS) profiles have 
uncovered the relationship between DDR gene mutations and altered 
cellular responses under various DNA damage conditions and some of 
which caused the accumulation of driver mutations to induce global 
genomic instability and thereby facilitating tumorigenesis and cancer 
progression [12,13]. DDR pathway alterations also affect immuno-
therapy efficacy. Indeed, genomic instability featured by elevated mu-
tation frequencies results in dysregulation in the DDR pathway causing a 
high mutational load linking with an increase in neoantigen load (NAL) 
and tumor-infiltrating lymphocytes (TILs), a key hallmark to sensitize 
with ICI [14,15]. In such, mutations in DDR genes can upregulate NAL, 
CD4+ T cells, and CD8+ T cells, and alter PD-1 and PD-L1 expression [16, 
17]. Although immunotherapy with atezolizumab plus bevacizumab 
was the first regimen to demonstrate superiority over sorafenib mono-
therapy in a randomized phase III trial and was approved as a standard 
first-line treatment for advanced HCC by the Food and Drug Adminis-
tration (FDA), only a minority of patients experience clinical benefits 
[18]. Therefore, a deeper comprehension of the interaction between the 
TME and the DDR as well as the dynamic immune ecosystem under 
various DDR statuses will be valuable to resolve the heterogeneity and 
relevant mechanisms through the innate immune response in HCC and 
may help developed more effective treatment strategies. 

In this study, we incorporated multi-omics analyses, including 
scRNA-seq, bulk RNA-seq (tissue and cell lines) and targeted proteomics 
(reverse phase protein arrays, RPPA), to comprehensively address the 
molecular heterogeneity of the tumor microenvironment (TME) in HCC 
under different DDR statuses induced by immunotherapy. Using a so-
phisticated combination of machine learning algorithms, we established 
an RNA sequencing-based DDR scoring framework termed DDRscore. By 
integrating this DDR scoring framework with proteomics and cell line 
RNA-seq data, we successfully identified potential therapeutic targets 
(BRAF) specifically tailored for high DDR status in HCC. 

2. Methods 

2.1. Patient sample acquisition and approval 

This study was approved by the Ethics Committee of Zhongshan 

Hospital, Fudan University, China (B2022-048R). In total 170 HCC pa-
tients with paired tumors and adjacent nontumor liver tissues were 
included in this analysis (159 HCC patients for RNA-seq analysis and 11 
HCC patients for RPPA (FDUZS, Table S1)). All patients undergoing 
primary curative resection at Zhongshan Hospital were treatment-naïve. 
All tissue samples were preserved within 30 min after surgery to ensure 
the quality for downstream profiling. 

2.2. External data collection 

We used two sets of external scRNA-seq data (GSE149614 [19] and 
GSE151530 [20]), which were pre-annotated in details with sufficient 
clinical information. We also downloaded three bulk-seq cohorts to 
examine the robustness and clinical value of DDRscore and those 
included 349 individuals from The Cancer Genome Atlas (https://portal. 
gdc.cancer.gov/) TCGA-LIHC cohort, 196 individuals from the Interna-
tional Cancer Genome Consortium (https://dcc.icgc.org/) ICGC LIRI-JP 
cohort, and 312 individuals from the previously published study by 
Choueiri et al. [21]. Transcriptome data were processed by log2 trans-
formation from transcripts per million values (TPM). A collection of 276 
genes associated with DDR were compiled from previously published 
studies. The Cancer Proteome Atlas (https://tcpaportal.org/tcpa/) pro-
vided protein array (RPPA) information for 169 HCC cases. Expression 
profiles of 22 hepatocellular carcinoma cell lines were received from the 
Broad Institute Cancer Cell Line Encyclopedia (CCLE) project 
(https://portals.broadinstitute.org/ccle/). From genome-scale CRISPR 
knockout screening, the CERES scores of 18,333 genes in 739 cell lines 
were obtained from the Cancer Dependency Map (https://depmap.org/ 
portal/). CERES scores were used to quantify the dependence of the 
desired gene on specific tumor cell lines (CCLs), with lower scores 
suggesting that the gene is more likely to be required for proliferation 
and survival in the given CCLs. 

2.3. Preprocessing and analysis of scRNA-seq data 

2.3.1. Data pre-processing, filtering and normalization 
Two scRNA-seq datasets from above were processed separately using 

Seurat v4. For the GSE149614 cohort, cells with 500 to 6000 genes and 
1000 to 100,000 UMIs were pre-selected based on their expression 
profiles. The filtering criteria included a mitochondrial gene fraction of 
less than 15 %. Similarly, for the GSE151530 cohort, cells with 300 to 
8000 genes and 1000 to 80,000 UMIs were selected. The filtering criteria 
for this cohort were a mitochondrial gene fraction of less than 30 %. 
Post-selection, both datasets were re-normalized using Seurat’s 
SCTransform, and the top most 3000 genes were selected as highly 
variable genes (HVG) and utilized to stabilize UMI count variance. 

Clustering and cell type annotation. The principal component 
analysis (PCA) was performed using highly variable genes (HVGs), and 
the shared nearest neighbor (SNN) graph and unified manifold 
approximation and projection (UMAP) were constructed using Louvain 
algorithm by selecting the first 30 principal components and clustering 
units. For the GSE149614 cohort, the major cell types were identified 
based on cross-cohort typical cell type-labeled scores: Hepatocytes were 
labeled with ALB, EPCAM, SERPINA1, and HNF4A; B cells were labeled 
with CD19, CD79A, and MS4A1; CD4, CD3D, CD3E, and TRAC were 
used to identify CD4+ T cells; and CD8A, CD8B, and GZMK were used to 
identify CD8+ T cells; Natural killer cells (NKs) were labeled with GNLY 
and NKG7; dendritic cells were labeled with C1orf54, LGALS2, CD1C, 
and XCR1; macrophages were labeled with CD68, FCGR1A, and ITGAX; 
endothelial cells were labeled with CDH5, CLDN5, and RAMP2; and fi-
broblasts were labeled with C1R, COL1A2, and DCN. 

To predict copy number alteration without tumor annotations, we 
used the CopyKAT (https://github.com/navinlabcode/copykat) [22] to 
define the aneuploid cell cluster. 

We follow the walkthrough (https://satijalab.org/seurat/v3.1/integ 
ration.html) to perform Reference Mapping on GSE151530 cohort based 
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on GSE149614 cohort. As described in the original publication, we here 
specify GSE149614 cohort as the “reference” possibility for integration 
analysis, and GSE151530 cohort is designated as the “query”. original 
publication, we here specify GSE149614 cohort as the “reference” pos-
sibility for the integrated analysis, and GSE151530 cohort is specified as 
the “query” dataset. dataset. The process was accomplished using the 
TransferData algorithm [23]. 

For subcluster analysis of B cells and NKs, the clustree package was 
used to select the resolution [24]. FindAllMarkers function was utilized 
to find genes with differential expression, and the FindMarkers function 
was used for comparative analysis of conditions within each cluster. 

2.4. High-dimensional weighted gene Co-expression network analysis 
(hdWGCNA) 

Co-expression analysis for single cell RNA-seq was accomplished 
using the accessible R package hdWGCNA (https://github.com/smorabi 
t/hdWGCNA) [25]. According to the manufacturer’s description, the 
method employs a one-step network creation and module recognition 
method, calculating and displaying module-specific gene expression, 
adjacency matrix heatmaps, and other pertinent outputs. 

2.5. Assessment of DDR status based on scRNA-seq 

We applied an algorithm [26,27] which analyzed changes in the 
signal-to-noise ratio between genes and cells based on the expression 
profile of DDR-related genes to estimate the capacity of DNA damage 
repair activity in cells or samples. Specifically, we first normalized the 
scRNA-seq data from malignant cells only using Seurat to obtain an 
expression matrix M and calculated the mean expression value Ei for 
each gene i. Then, using a random sampling approach, all genes were 
sorted into 50 expression bins due on their Ei, and the frequency of 
occurrence of DDR-related genes, designated as Bf, was calculated. 
Random feature genes were selected from each bin based on the Bf count 
from random sampling, with the overall quantity of random feature 
genes being equal to the number of DDR-related genes. This random 
process was iterated 1000 times. Last but not least, a gene centralized 
expressed matrix was constructed, which can be read as data devoid of 
excessive migratory signals: 

Zi,j =Mi,j −

(
∑

j
Mi,j

)/

N  

Where Zi,j is the central expression of gene i in cell j, Mi,j is the expression 
of gene i in cell j in the expression matrix M, and N is the number of cells. 
Using the central expression matrix, we defined the difference between 
the average value of the K × 1000 randomly sampled signatures and the 
average value of K DDR-related genes as the DDRscore for the malignant 
cells. The pseudo-value of the DDRscore for each cell in each sample is 
defined as the sample’s DDRscore. 

2.6. Distribution preference of cell types categories 

To describe the distribution of cell types in DDR groups, odds ratios 
(ORs) were computed and preferences were shown [28]. For each 
possible combination of cell type i and category j, a 2 × 2 table of 
contingencies was formed. Then, the OR and corresponding P-value 
were then calculated using Fisher’s exact test on the contingency table. 
Using the Benjamini-Hochberg (BH) approach provided in the R func-
tion P. adjust, the P-value was modified. A greater OR value implies that 
cell type i is more likely to be present in tissue j, whereas a smaller OR 
value suggests that cell type i is less likely to be present in tissue j. 

2.7. Function enrichment analysis and trajectory analysis 

The activity scores of 14 pathways related to tumorigenesis and 

development were calculated using the functional genomics tool, 
PROGENy [29]. PROGENy evaluates pathway activity using “footprint 
gene sets”, which don’t include pathway members but instead include 
the most sensitive genes to pathway perturbations. Heatmaps were 
created using the ComplexHeatmap [30]. Gene set enrichment analysis 
(GSEA) was performed on the enrichment process of the cell clusters 
using the clusterProfiler [31]. To reveal the potential relationship be-
tween malignant cells and fibroblasts, a trajectory analysis was per-
formed using Monocle v2 [32]. Using the differalgenetest function, 
significant genes (BH-corrected P 0.01) were identified and the cells 
were sorted in an unsupervised way during the differential expression 
analysis of the investigated cells. Dimension reduction and cell sorting 
were performed with default parameters followed by trajectory 
construction. 

2.8. Cell-cell communication 

In order to study the potential interactions between cell types in the 
TME with different DDR scores after receiving ICIs in HCC, we used 
CellPhoneDB for cell-cell communication analysis [33]. We started by 
randomly shuffled the clusters labelling of all cells 1000 times to 
calculate the mean ligand and receptor expression levels of the inter-
action clusters. This resulted in a distribution of zero for every 
receptor-ligand pair. We determined the theoretical P-value of cell type 
specialization for each receptor-ligand complex by calculating the 
fraction of average values greater than the actual average value. Then, 
we chose interactions of biological relevance. To further understand the 
gene expression pattern differences under different DDR scores, we used 
the NicheNet method to predict which ligands regulate which receptors 
in the expression of another cell type that is formed by one cell type. 

2.9. “Ligands – receptors - transcription factors - target genes” regulatory 
network 

The interplay between dendritic cells (DCs) and CD8+ T cells under 
low DDR conditions was analyzed using scMLnet package [34]. ScMLnet 
package can simulate not only cell-cell communication but also gene 
regulation networks within cells. It integrates cell-cell pathways 
(ligands-receptors interaction) and cell-intracellular sub-networks 
(receptors-transcription factors pathways and transcription factor-target 
genes interaction) in accordance with cell type specific gene expression, 
prior networking knowledge, and parameter estimation. We used 
scMLnet package to extract the connection data for the “ligands-re-
ceptors-transcription factors-target genes” regulatory network. Then, 
using the iGraph package in the R, we performed network analysis on 
the extracted data to highlight the neighborhood network and generate 
enriched biological/pathway terms. Using the clusterProfiler package 
[31], a gene set enrichment analysis of was conducted. 

2.10. Signatures constructed from a combined approach of bulk-seq data 
and machine learning 

To design a consensus DDRscore with desired accuracy and reli-
ability, we tested our data against 10 machine learning methods with 
101 algorithm combinations [35]. Those algorithms include Random 
Survival Forest (RSF), Elastic Net (Enet), Lasso, Ridge, Stepwise Cox, 
CoxBoost, Cox Partial Least Squares Regression (plsRcox), Supervised 
Principal Component (SuperPC), Generalized Boosted Regression Model 
(GBM), and Survival Support Vector Machine (survival-SVM). Firstly, 
DDR-related genes congruent with scRNA-seq data were included in 101 
algorithm combinations to train prediction models in the TCGA-LIHC 
cohort using leave-one-out cross-validation (LOOCV). Then, all models 
were validated in the ICGC LIRI-JP cohort. Ultimately, the Harrell 
consistency index (C-index) was computed for all training and validation 
sets for each model, and the model with the greatest average C-index 
was chosen as the best model. Meanwhile, survival modeling and 
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Kaplan-Meier (KM) analysis were conducted using the “survival” pack-
age in R. 

2.11. Reverse phase protein arrays and data processing 

For RPPA proteomics, each specimen was evaluated by a committee- 
certified pathologist (H&E-stained slide) to confirm the histology and 
tumor contents. Protein quality control and examination samples (pro-
tein level >1.5 μg/μl) will undergo rigorous progressive dilution with 
Tecan Fluent 480/780 (1, 1/2, 1/4, 1/8, 1/16). More than 400 protein 
microarrays were generated using the Quanterix 2470 Arrayer high- 
speed printing workstation. Using the Cancer Signaling Pano-Profiler, 
384 antibodies in this panel were colorimetrically visualized on the 
microarray chip (one antibody to one slide) using the Agilent Autos-
tainer Link 48 automatic staining system. Following colorimetric 
development, the Huron TissueScope LE120 high-throughput slide 
scanner was used for high-resolution readout acquisition. MicroVigene 
analytics software was then used for digital conversion of image data 
into quantitative data (raw data defined as level 1 data L1) based on the 
predefined pixel intensity algorism [36]. Raw data were linear trans-
formed to general level 2 data (L2), Data were then normalized by 
median-centering across all proteins and then centered across all sam-
ples to generate comparable data for plotting. 

2.12. Drug target and agents’ response analysis 

We downloaded 2249 target information for 6125 compounds from a 
published study to search for candidate druggable targets [37]. To 
identify protein targets with promising clinical importance in HCC pa-
tients with high DDRscore, a Spearman correlation analysis was con-
ducted between the RPPA protein expression data and DDRscore. 
Proteins with a correlation coefficient greater than 0.3 were considered 
drug targets associated with poor prognosis. Following this, we gener-
ated the DDRscore with each liver cancer cell line from the CCLE project 
and ran a correlation analysis between the DDRscore and the CERES 
score on these cell lines. CERES is a method that estimates gene 
dependence while considering copy number effects during essential 
screening, a method previously applied to the Avana dataset to calculate 
the CERES score for each gene and cell line [38]. The lower the CERES 
score, the higher the likelihood that the gene is dependent on a specific 
CCL. Thus, we considered genes with a correlation coefficient less than 
− 0.25 as drug targets associated with poor prognosis. The targets 
identified using both of methods were considered as potential thera-
peutic drug targets for HCC with high DDRscores. To predict drug 
response, logistic regression methods (including ridge regression and 
elastic nets) were applied [39]. For ridge regression, prophet package in 
R was used [40] to test the performance of the drug response predictive 
accuracy using default 10-fold cross-validation in clinical specimens. 

2.13. Statistical analysis 

R software (version 4.2.1) and Python (version 3.9.12) were utilized 
for all statistical analyses. If the variables were normally distributed, 
parametric tests (Student’s t-test or ANOVA) or for data exhibiting non- 
normality, non-parametric tests (Wilcoxon rank-sum test or Kruskal- 
Walli’s test) were used to compare continuous variables between two or 
more groups. Pearson’s r correlation or Spearman’s rank-order corre-
lation were used to measure the relationship between two continuous 
variables. 

3. Results 

3.1. DDR heterogeneity analysis of malignant cells in HCC 

To perform an in-depth analysis of the interplay between malignant 
cells and the TME in HCC associated with different DDR conditions, we 

collected two single-cell RNA-seq datasets. The GSE149614 dataset 
contained 9 benign livers tissues and 10 HCC tissues, while the 
GSE151530 dataset contained 4 HCC tissues without immune check-
point inhibitor (ICI) treatment and 9 HCC tissues that were treated with 
ICI. All these patients were characterized with various stages according 
to American Joint Committee on Cancer (AJCC) (Table S2). Meanwhile, 
bulk RNA sequencing (bulk-RNA seq) datasets were employed to test 
against 101 machine-learning models including 159 patients from our 
own cohort (FDUZS), 349 patients from the TCGA-LIHC cohort, 243 
patients from the ICGC-LIRI-JP cohort, and 312 patients from the cohort 
of Choueiri et al. In addition, reverse-phase protein array (RPPA) data 
from 169 HCC patients and bulk-seq data from 22 liver cancer cell lines 
were utilized to develop therapeutic targets and predict prospective 
treatments. Finally, 11 pairs of HCC and adjacent normal tissues were 
subject to RPPA proteomic profiling, and results were validated in TCGA 
HCC cohort. The schematic diagram of this study was depicted in 
Fig. 1A. 

In total, high-quality transcriptome data of 50,920 cells, including 
21,140 cells from non-tumor live tissues and 29,780 cells from HCC 
tissues, were acquired from the GSE149614 dataset after quality assur-
ance and filtering for individual cells. After removal of unwanted cells 
and data merging, dimension reduction characterized heterogeneity 
across various tissues, samples, pathological stages (Figs. S1A–D). We 
noted biological differences in some tumor- or patient-specific clusters 
indicating potential underlying mechanisms (Figs. S1A–D). To reveal 
which cellular compartments contributed most to the interpatient het-
erogeneity, we annotated and partitioned each cell cluster using marker 
genes. The HCC ecosystem composition was mainly featured by hepa-
tocytes, B cells (BCs), CD4+ T cells (CD4s), CD8+ T cells (CD8s), natural 
killer cells (NKs), dendritic cells (DCs), macrophages, endothelial cells 
(ECs), and fibroblasts (Fibs) (Fig. 1B). To further resolve the intertu-
moral heterogeneity, we compared the contents of the cellular com-
partments at individual sample levels (Fig. 1C). Despite being 
heterogenous at inter-sample scale, epithelial and immune cells showed 
a distinct tissue-of-origin difference between normal and cancerous 
tissues. Immune cells were predominant in para-tumor samples, whereas 
HCC tissues had significantly expanded malignant epithelium, probably 
due to the growing malignant cells in tumor samples (Figure S1E, 
Figure S1F). Though enlarged tumor contents existed by large during 
oncogenic transformation, this seemed also associated with difference 
tumor stages (Fig. S1F right panel and S1G right panel). Of the immune 
components, B cells and T cells experienced significant alterations 
during tumor progression, whereas the liver resident macrophages 
remained almost unchanged (Figure S1G, Figure S1F). 

Upon obtaining the basic HCC TME characteristics, we applied the 
CopyKAT algorithm to assess large-scale chromosomal copy number 
alterations by focusing on liver cancer cells exclusively. We extracted 
9957 malignant cells identified from 9 tumor samples containing at least 
50 malignant cells and retained for further analysis (one sample dis-
carded due to low malignant cell numbers identified) (Fig. 1D). Inter-
tumoral heterogeneities were observed highlighting pre-existing 
biological differences of malignant cells stemming from sample-of- 
origins (Fig. 1E, left panel). In addition, the frequency of the identified 
malignant cell populations varied between samples, which were shown 
to form clusters essentially according to the pathological stages by the 
dendrogram (Fig. 1E, right panel). To quantify the DDR status of ma-
lignant cells, we first performed high-dimensional weighted gene co- 
expression network analysis (hdWGCNA) on the single-cell expression 
profiles of 9957 malignant cells to extract genes linking with oncogenic 
transformation. We identified 19 gene modules under an optimal scale- 
free topology model fit with a soft threshold of 5 (Fig. S2). For each 
module, we also constructed co-expression networks based on individ-
ual module gene profiles (Fig. S3). Notably, most of the hub genes in 
module 3 belonged to the ribosomal protein family, whose expression 
has been implicated in the onset and progression of malignancies 
corroborating the trueness of identified genes via hdWGCNA [41]. Next, 
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Fig. 1. DDR Heterogeneity in Malignant Cells. A. Workflow for experimental design and analysis. B. UMAP plot (left panel), bar plot representing cell numbers 
(middle panel), and pie chart representing cell proportions (right panel) based on 50920 filtered cells, with each color indicating the associated cell type. C. Relative 
percentages of 9 cell populations in different sample sources. D. Number of CopyKAT-identified malignant and non-malignant cells. E. UMAP plot of 9957 malignant 
cells (left panel) and hclust tree plot of corresponding clusters from different samples (right panel), with each color representing the related sample source and the 
size of the circle representing the number of cells. F. WGCNA analysis. Phenotypic characteristics are displayed on the right of the image, and the bottom of the image 
represents different gene modules. G. Venn diagram (top panel) and bar plot (bottom panel) showing the intersection of the DDR gene set and the genes selected by 
WGCNA and their numbers. H. Differences in DDR in malignant cells at different stages. The statistical differences between groups were determined by the Wilcoxon 
rank test. I. Bar graph of the DDRscore for each HCC sample. J. PROGENy calculates the activity scores of 14 pathways related to tumor initiation and development in 
the DDRscore group. P < 0.05, **P < 0.01, ***P < 0.001. 
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we selected total of 3230 genes significantly associated with the TNM 
stage from all identified modules as key indicators of tumor progression 
(Fig. 1F). Within that, 56 genes were known to be involved in the DDR 
process (Fig. 1G). In order to build a quantitative model to infer DDR 
status according to clinical stages, we used those 56 shared genes and a 
parameterized scoring system (DDRscore) was then developed which 
allowed quantitative assessment DDR status based on malignant cells. 
By applying the DDRscore scoring system, we found early HCC had 
significantly higher levels of the DNA damage repair activity as 

compared to late-stage HCC (p < 0.0001, Fig. 1H) supporting the pre-
vious hypothesis whereby loss of efficient DNA repair machinery in-
duces cumulating mutations and subsequent genetic instability along 
with tumor progression [42]. The overall DDR levels of HCC samples 
were derived using the DDRscore of malignant cells. Samples with DDR 
levels greater than 0 were defined as the “DDR-high” group, while those 
with DDR levels less than 0 were defined as the DDR-low group (Fig. 1I). 
Under this grouping assignment, we compared relevant pathways to 
differentiate those tumor cells based on gene enrichment analysis and 

Fig. 2. Analysis of the tumor microenvironment in HCC with different levels of DDR using scRNA-seq. A. UMAP visualization of the HCC tumor microenvironment in 
different DDRscore groups, with each color indicating the associated cell type. B. Heat map showing the occurrence of cellular clusters with OR in each group. OR >
1.5 indicates that the cell cluster is preferentially distributed in the corresponding group. Hierarchical clustering based on cosine distance is applied to the rows. C. 
Clustree plot of unsupervised clustering at different resolution values. D. UMAP visualization of natural killer cells, with each color representing the corresponding 
subcellular type. E. Bar graph showing the number of the 6 subtypes of natural killer cells. F. Pie chart showing the relative proportions of the two DDRscore groups 
and the 6 subtypes of natural killer cells. G. Bar graph (top panel) showing the number of the two B cell subtypes, a relative proportion chart (middle panel), and 
UMAP visualization (bottom panel), with each color representing the corresponding subcellular type. H–K. GSEA showing the key enriched pathways in the DDR-high 
high and DDR-low groups for the two B cell subtypes. 
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found 14 classical tumor-associated pathways. In particular, those 
included up-regulated anti-tumoral p53 and tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) pathways enriched in 
the low DDR group whereas pro-tumor epidermal growth factor receptor 
(EGFR) and phosphatidylinositol 3-kinases (PI3Ks) pathways were 
up-regulated in the high DDR group validating our DDRscore classifi-
cation (Fig. 1J). Taken together, these results suggested that the DDR of 
malignant cells has significant intertumoral heterogeneity and may 
contribute to tumor progression. 

3.2. Distinct profiles of the TME ecosystem in HCC under varying DDR 
conditions 

Upon elucidating the DDR-driven tumorigenic alteration, we 
continued to explore the difference from TME perspective across HCC 
samples. According to patient level DDR assignment, we generated both 
DDR-high and DDR-low TME at single cell resolution (Fig. 2A). We 
applied odds ratio (OR) based statistical analysis to evaluate potential 
cell type alterations. Interestingly, while NK cells had the strongest as-
sociation with the “DDR-low” group, B cells appeared to be enriched 
most in the “DDR-high” group (Fig. 2B). By focusing on NKs sub popu-
lation, we generated a classification free. We then dissected further in 
details of those heterogenous cell clusters. For NK cells, single-cell 
expression profiles (including both DDR-high and DDR-low tumors) 
were clustered under various resolutions, and a classification tree was 
subsequently constructed. Results indicated a stable region within this 
tree (resolution 0.1–0.5, Fig. 2C). NKs were clustered into six subsets: 
SPP1+ NKs, LDLRAD4+ NKs, GSTA1+ NKs, IGLC3+ NKs, IRF8+ NKs, and 
FCGR3A+ NKs (Fig. 2D–E). Within those NK subsets, the majority (78 %) 
belonged to the “DDR-low” group and these mainly contained SPP1+

NKs, LDLRAD4+ NKs, IRF8+ NKs, and FCGR3A+ NKs. Oppositely, the 
“DDR-high” group were dominated by GSTA1+ NKs and IGLC3+ NKs 
(Fig. 2F). Highly expressed FCGR3A in NKs (FCGR3A+ NKs) is an 
essential receptor for triggering antibody-dependent cytotoxicity, pro-
moting NKs proliferation, and memory-like cytotoxicity against cancer 
cells [43]. Meanwhile, GSTA1, as a marker gene of GSTA1+ NKs, is 
related to tumor susceptibility and the metabolic process [44]. 
Furthermore, by applying enrichment analyses on those subsets, we 
showed that both FCGR3A+ and LDLRAD4+ NKs were involved in the 
antigen processing and presentation-related pathways of endopeptidase 
indicating a more dynamic immune activity in DDR-low group. Besides, 
SPP1+ NKs were likely to be involved in processes such as “response to 
unfolded protein” whereas GSTA1+ NKs associated with DDR-high 
group had more active metabolic process such as the “fatty acid meta-
bolic processing”. (Fig. S4A). 

Regarding the B cells, we also dissected them into CD20+ B Cells and 
CD138+ plasma cells (Fig. 2G lower panel). Notably, CD20+ B Cells were 
more prevalent in the “DDR-low” group as compared to the “DDR-high” 
group (Fig. 2G, upper panel). Moreover, the presence of CD20+ B Cells in 
the “DDR-low” group featured highly expressed CXCL8 and GZMB 
indicating a probable synergistic response of tumor-infiltrating CD20+ B 
Cells with cytotoxic T lymphocytes to restrain tumor progression 
(Fig. S4B) [45]. Pathway analysis indicated CD20+ activates “PPAR 
signaling pathway” in the “DDR-high” patients, whereas the “cyto-
plasmic DNA sensing pathway”, namely the cGAS-STING pathway, was 
more active in the “DDR-low” patients. For CD138+ plasma cells, 
“DDR-high” group also had elevated “B cell receptor signaling” activity, 
while “Glycolysis Gluconeogenesis” were enhanced in the “DDR-low” 
group (Fig. 2H–K). Collectively, our findings supported a NKs and B cells 
regulated HCC oncogenic switch from efficient DNA repair condition 
(DDR-high) to a functionally impaired status (DDR-low) by reprog-
ramming the immune ecosystem and metabolic processes. 

3.3. Characteristics of high DDR-mediated immunosuppression after 
immune checkpoint blockade 

Since distinct immune regulatory pattern was observed under 
different DDR status in HCC, we then sought to further explore the 
relation of DDR in response to immunotherapy response. Using the 
single cell dataset (GSE151530), we subset a total of 34,708 cells with 
high-quality transcriptome data, including 11,704 cells from HCC tis-
sues without immunotherapy and 23,004 cells from HCC tissues 
receiving immunotherapy treatment (anti-PD-1 blockade). After 
normalization, cells were clustered and inter-group annotations sug-
gested negligible batch effects across samples, sequencing platforms, 
pathological stages, and treatment groups (Fig. S5A). To uncover the key 
cellular components contributing towards immunotherapy-induced 
biological difference, we first annotated cell types using the “Trans-
ferData” algorithm by referencing from the cell types deduced from 
aforementioned sing cell data (GSE149614). This projection allowed 
identification of epithelial cells included malignant and non-malignant 
cells and major immune and stromal cells included B Cells, CD4+ T 
cells, CD8+ T cells, NK cells, dendritic cells, macrophages, endothelial 
cells, and fibroblasts (Fig. 3A). Patients receiving immunotherapy were 
mainly with advanced HCC (stage IV) as determined by clinical regimes 
(Fig. S5A). Compared to normal epithelium, malignant cells expressed 
genes such as FGA and SDC1 (Fig. S5B). Dendritic cells (DCs), which are 
involved in antigen presentation, express major histocompatibility 
complex (MHC) molecules and are responsible for the cross-priming of 
anti-tumor CD8+ T lymphocytes. Specifically, GZMK was substantially 
expressed in CD8+ T cells, while TRAC was elevated in CD4+ T cells 
(Fig. S5B). In addition, the immunotherapy group had fewer malignant 
cells and more CD8+ T cells compared to the non-immunotherapy group 
(Fig. 3B). Upon ensuring the robustness of the cell annotation and 
clustering, we noted the overall HCC neoplastic epithelial ratio had 
decreased following immunotherapy treatment, a finding likely to be 
attributed to immune checkpoint inhibitor-induced tumor killing 
(Fig. 3B–C). UMAP was used to reduce dimensionality and cluster ma-
lignant cells. Similar to non-immunotherapy-treated HCC, H08, H68, 
and H74 all displayed considerable intertumoral heterogeneity 
(Fig. 3D). In contrast, other malignant cells of HCC receiving immuno-
therapy (H73a/b, H58a/c, H77, H08 and H74) were relatively close to 
each other implicating a reduced heterogeneity across samples (Fig. 3D). 

Next, we explored the DDR status within those ICI-treatment samples 
by employing the DDRscore algorithm developed from above. Similarly, 
samples with DDR levels greater than 0 were classified into the “DDR- 
high” group, and samples with DDR levels less than 0 were pinned into 
the “DDR-low” group. At the patient level, different DDR status formed 
distinct TME with some altered immune phenotype compositions 
(Fig. 3E). In such, the “DDR-high” group was characterized by elevated 
malignant tumor cells with reduced infiltration of CD8+ T cells and NKs 
as compared to “DDR-low” group, a finding not only consistent with 
above hypothesis but also indicative of existing connection with ICI 
therapy. We further performed differential and functional analysis on 
the malignant cell population stratified by DDR status. We observed 
“DDR-low” group had activated fatty acid metabolism pathway, WNT 
pathway activation and probable oncogenic MYC activation (Fig. 3F–G). 
Conversely, “DDR-high” group was signified by epithelial-mesenchymal 
transition (EMT), oncogenic activation of KRAS matching with above 
findings (Fig. 3E). Next, to explore how EMT mediates the DDR transi-
tion, we plotted the tumor cell development trajectory. Pseudo-time 
inferred a development tendency starting with malignant cell clusters 
and gradually differentiating into fibroblasts suggesting a probable role 
of fibrotic TME formation under DDR-competent conditions (Fig. 3H). 
Finally, we investigated the immune cell components across patients 
with varying DDRscore. By analyzing key regulatory molecules within 
immune-regulatory pathways, a general trend of immune inflammation 
was observed in DDR-low patients. Those included multiple immune 
inhibitory checkpoints: CD274, PDCD1, CTLA4, LAG-3, IDO1 and TIGIT. 
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and those in particular LAG-3 exhibited significantly elevated expression 
in CD8+ T cells in the “DDR-low” patients (Fig. 3I). As for immunosti-
mulatory molecules, tumor necrosis factor (TNF)-associated family sig-
nals were specifically enriched indicating that DDR impairment may 
induce successive tumor-killing (Fig. 3I, middle) and besides, T cell/B 
cell communication: CD27/CD70, T-cell/DC crosstalk via CD40LG/ 
CD40 and CD80-86/CD28 were also observed, which showed generally 
up-regulated patterns in “DDR-high” group (Fig. 3I). Moreover, by 
measuring the MHC molecules, we showed that MHC I molecules HLA- 
A, B, C (classical) and HLA- E, F, G (non-classical) exhibited increasing 
partners and similarly cell type specific MHC II molecules (exclusively B 
cells, DCs and macrophages mediated) were simultaneously up- 
regulated in “DDR-low” patients (Fig. 3I). In summary, these phenom-
ena indicated that DDR status characterized by DDRscore has certain 
regulatory roles in the TME to differentiate HCC patient receiving ICI 

immunotherapy. 

3.4. The CXCL10-CXCR3 axis induces DCs to cross-present antigen and 
recognize CD8+ T cells under the low DDR state 

Since cellular crosstalk was pronounced in HCC TME, we next 
employed multiple bioinformatic tools (CellPhoneDB, NicheNet, and 
scMLnet) to identify molecular interactions between ligand-receptor 
pairs within specific cell types under different DDR states in ICI 
treated patients. On a global scale, TME cell-cell communication un-
derwent a dynamic reprogramming whereby “DDR-high” was central-
ized through fibroblast-endothelium axis whereas “DDR-high” had a 
complete shift towards macrophage-dominated pattern (Fig. 4A–B). 
Moreover, using CD8+ T cells as recipient cells, we showed dynamic 
alterations of cellular crosstalk in response to changing DDR status 

Fig. 3. Immune Therapy Blockade-Mediated Characteristics of the Immune Microenvironment by DDR. A. scRNA-seq of 34,708 filtered cells. The left panel shows 
cell annotation, and the right panel shows UMAP plots of cells under different treatment conditions and bar graphs of cell numbers under different clinical indices. B. 
Relative percentage of 10 cell populations in different treatment sources. C. Bar graphs of the numbers of malignant and non-malignant cells in different sample 
sources. D. UMAP plot (left panel) of 9966 malignant cells, with each color representing a corresponding sample source; a heat map (right panel) showing the staging 
features and treatment methods of different samples. E. UMAP plots (bottom panel) and cell proportion graphs (top panel) of the post-immune therapy HCC tumor 
microenvironment in different DDR score groups, with each color indicating the corresponding cell type. F. Volcano plot of the difference in gene expression between 
high and low DDR score groups in malignant cells. G. Bar graphs of significantly activated pathways in malignant cells in high and low DDR score groups (red and 
blue, respectively). H. Pseudo-temporal analysis of cell state transition from malignant to fibroblast-like state in high DDR score groups, with each cell colored by 
pseudo-time (top panel) and cell type (bottom panel), measuring the changes made to each cell through a process (e.g., differentiation). I. Heatmap of the relative 
expression of immune checkpoint molecules, immune activation molecules, and major histocompatibility complex molecules in different cell types in different DDR 
score groups, with data transformed by scaling. 
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following ICI therapy. Those involved augmented communications with 
macrophages (fold-change FC = 2.68), DC (FC = 2.54) and NK cells (FC 
= 2.32) respectively in DDR-low group (Fig. 4B–C). Apart from 
communication arising from CD8+ T cells self-interaction (though total 
number was low), interactions with endothelium, fibroblasts and tumor 
cells were less phenomenal (Fig. 4B–C). Looking at the ligand expression 
level, using NicheNet algorithm, we characterized the major ligand 
expression associated with varying DDR levels (Fig. 4D, Figs. S6A–B). 

These results demonstrated that HLA-DRA and GSTP1 were highly 
expressed in DCs under “DDR-low” condition but down-regulated in 
“DDR-high” state. Macrophages, another highly regulated population, 
had up-regulated GRN in “DDR-low” group and HLA-DRA to a lesser 
extent in its expression was also significantly increased in “DDR-low” 
group (Fig. 4D, Figs. S6A–B). TF which binds to IL7R in CD8+ T cells was 
the only highly-expressed ligand molecule significantly highly expressed 
in the “DDR-high” group (Fig. 4D, Figs. S6A–B). Since we have shown 

Fig. 4. Characteristics of cell communication mediated by different DDRs after immune therapy blockade. A-B. Heat maps (left panel) of ligand-receptor interactions 
between cell types from CellphoneDB, including malignant cells, stromal cells, and immune cells, and network graphs (right panel) represent the number of in-
teractions between selected cell types and CD8+ T cells, with dot colors representing cell types. A represents the group with high DDRscore, and B represents the 
group with a low DDRscore. C. Rose plots show the difference in cell interaction levels between groups with high and low DDRscore. D. Dot plots show the top 20 
ligands with differential expression in the group with low DDRscores analyzed by NicheNet. The size of the dots represents the proportion of cells expressing the 
ligand. E. Heat maps show the receptor molecules interacting with the top 20 ligands in CD8+ T cells. The color represents the potential of the interaction. F. Network 
graph of “ligand-receptor-transcription factor-target gene” interactions between dendritic cells and CD8+ T cells in the group with low DDRscores. Different blocks 
represent the neighborhood structures extracted by iGraph network analysis data, with the text next to the blocks representing the corresponding biological 
pathways. Red circles represent ligands, blue circles represent receptors, purple blocks represent transcription factors, and green blocks represent target genes. G. 
This figure summarizes the different scRNA-seq immune ecosystems between HCCs with high and low DDRscores after immune therapy blockade. EMT, epithelial- 
mesenchymal transition; TCR, T cell receptor. 

Fig. 5. A consensus DDRscore was developed and validated using a combination of bulk-seq data and machine learning methods. A. A total of 101 prediction models 
were calculated through a LOOCV framework, and the C-index was further calculated for each model on the training and validation datasets. B. The best λ was 
determined when the penalized likelihood deviation reached its minimum value in the TCGA-LIHC training cohort (left panel), the error rate in the random survival 
forest was used as the function of the classification tree (middle panel), and the out-of-bag importance values of the predicted genes were calculated (right panel). C- 
D. Kaplan-Meier OS curves of DDRscore in the TCGA-LIHC training cohort and the ICGC LIRI-JP validation cohort. E-F. Kaplan-Meier OS and RFS curves of DDRscore 
in the FDUZS cohort. G-I. Pie charts show the chi-squared test between DDRscore and clinical pathological factors in HCC samples from the TCGA-LIHC cohort, ICGC 
LIRI-JP cohort and FDUZS cohort. J. DDRscore grouping based on TIDE and Submap predictions for response to immune checkpoint inhibitors (PD-1 or CTLA4). K. 
Differences in DDRscore between different immune therapy efficacies were analyzed, and statistical differences between groups were tested using the Wilcoxon rank 
test. P < 0.05, **P < 0.01, ***P < 0.001. 
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CD8+ T cells being a key interactor and potentially involved in multiple 
cellular cross-talks, we used CellphoneDB to further interrogate their 
potential interacting molecules particularly in “DDR-low” patients. We 
found that the central mediator of the DCs featuring high CXCL10 
expression as previously identified in “DDR-low” patients had the 
highest co-expression with CXCR3, a CD8+ T cell surface receptor 
(Fig. 4E). This “DCs-CD8+ T cell” interaction axis was further investi-
gated by generating a complete “ligand-receptor-transcription factor- 
target gene” network, and predicted a variety of immune-related path-
ways that could be regulated in “DDR-low” group. This interacting 
network not only confirmed previously discovered cross-talk via MHC 
presentation such as HLA-B, HLA-F/E and B2M but also oncogenic MYC 
gene activation potentially bridged via PD1/PD-L1 pathway (Fig. 4F). 
Interestingly, IFNG, a crucial target gene of the CXCL10-CXCR3 axis 
could be regulated via transcription factors including GATA3, REL, and 
TBX21 revealing a crucial role of CXCL10-CXCR3 axis in recruiting DCs 
and CD8+ T cells to interact with and mediate the infiltration of CD8+ T 
cells into tumor niche under a low DDR state (Fig. 4F, Table S3). To this 
end, our findings, supported by in-depth profiling using bioinformatic 
tools, depicted a dynamic alteration of the HCC TME characterized by 
DDR status following immunotherapy (Fig. 4G), probing into potential 
therapeutic strategies to be exploited in the future. 

3.5. The DDR consensus signature predicts HCC prognosis and 
immunotherapy responsiveness 

In order to further utilize the transcriptional signature developed 
from above, we extracted the 56 essential DDR genes identified through 
single cell RNA-seq and developed a machine learning-based integration 
technique to generate DDRscores using external bulk RNA-seq datasets. 
We utilized the LOOCV framework to fit 101 combinatory machine 
learning methods and applied the TCGA-LIHC cohort as the training 
dataset and and the ICGC-LIRI-JP cohort for validation. We calculated 
the C-index for each model (Fig. 5A). With that, we derived the best 
predictive model (Lasso + random survival forest, RSF) with an average 
C-index of 0.843, (Fig. 5A, right panel bars). The optimal λ was deter-
mined using the LOOCV framework when the partial likelihood devia-
tion achieved its minimum (Fig. 5B, left panel). Under such a cutoff, RSF 
analysis with non-zero Lasso coefficients finally determined the impor-
tance of 17 DDR genes (Fig. 5B, right panel). The DDRscore for each 
patient was then determined using the regression coefficient weighted 
expression of 17 DDR genes in the RSF model. Upon demonstrating the 
robustness of the DDRscore model derived from 17-gene signature, we 
subsequently categorized patients into “DDR-high” or “DDR-low” group. 
Surprisingly, we found that the overall survival (OS) of the “DDR-high” 
patients was significantly lower than that of the “DDR-low” patients in 
both the TCGA-LIHC and the ICGC-LIRI-JP datasets (P-vaule <0.0001, 
Fig. 5C–D). 

To further validate the DDRscore-stratified patient survival, we used 
RNA-seq data comprising 159 HCC patients with clinical prognostic 
record available in-house [46]. In accordance with the above conclu-
sion, based on model developed on the selected 17 genes, the “DDR-low” 
group had improved outcomes for both OS and relapse free survival 
(RFS) as compared to the “DDR-low” group (OS P-value = 0.015, RFS 
P-value = 0.016, Fig. 5E–F). Further analysis using chi-square test also 
proved a survival benefit with “DDR-low” HCC patients across all three 
independent cohorts (p-vales<0.05) (Fig. 5G–I). Thus far, these results 
confirmed a robust model generated via quantitative DDR status esti-
mation that might be a potential prognostic indicator to predict benefits 
in HCC patients. 

Our data thus far pointed at an immune regulatory pattern through 
altered DDR status and since immune checkpoint inhibitors have been 
approved for first-line therapies in HCC, we utilized the TIDE algorithm 
to estimate the likely relationship between DDRscore and response to 
immunotherapy. The subclass mapping was also used to contrast the 
expression patterns of our established DDRscore groups with those of an 

additional published dataset containing 47 immunotherapy-responsive 
melanoma patients [47]. Using TIDE algorithm model, all three inde-
pendent cohorts showed a tendency of probable association between 
low DDRscore and PD-1 response whereas high DDRscore was inclined 
to PD-1 ineffectiveness (Fig. 5J, adjusted p-value showing in lighter 
colors). Finally, using an independent cohort, we found high DDRscore 
associated with disease progression (Fig. 5K, PD versus SD Wilcoxon 
p-value <0.05). Taken together, our results suggested extra values of 
DDRscore potentially linking with immunotherapy efficacy, a finding 
also proved by our the single-cell analysis from above. 

3.6. Targeting HCC patients with high DDRscore via B-Raf pathway 
inhibition 

In order to identify potential therapeutic targets linking with DDR 
status, especially those with high-DDR scores who may suffer from 
inferior clinical outcomes, we first calculated DDRscores across 22 HCC 
cell lines (Fig. 6A). We then retrieved reverse phase protein array 
(RPPA) data from the TCGA-LIHC cohort and correlated the DDRscore 
for individual patients with paired RPPA proteomic data. We found the 
B-Raf expression was positively correlated with DDRscore (Fig. 6B, 
Spearman’s R2 > 0.3). Next, we applied CERES scores to assess the 
correlation between individual gene dependencies and DDRscore based 
on 22 liver cancer cell lines and this again filtered BRAF gene as an 
important predictor of high-DDR score (Spearman’s R2 < − 0.25), 
Fig. 6C). Since both analyses pointed at the BRAF gene as an important 
therapeutic target in HCC, we conducted RPPA targeted proteomics on 
an independent HCC sample set (11 pairs of HCC and adjacent normal 
tissues) to verify its druggability. Using a panel covering 384 key 
oncogenic and druggable proteins and their modified forms, we found 
the active form of B-Raf (phosphorylated B-Raf at serine 445) and its 
downstream target MARK3 and ERK1/2 were significantly elevated in 
HCC (p < 0.001, Fig. 6D–E). Meantime, we also found that BRAF was 
significantly upregulated in the DDR-high group (Fig. 6F). Together, 
these data, by incorporating external TCGA data and in-house RPPA 
profiling, untangled a potential therapeutic vulnerability by targeting B- 
Raf pathway in DDR-high patients that may be of clinically important for 
patient stratification. 

4. Discussion 

Understanding the relationship between DDR and TME regulation in 
HCC will provide valuable insights into the development targeted 
therapies through DNA repair related mechanisms. Previously, many 
studies either focused on gene knockout mouse models to investigate 
regulatory mechanisms or exploring genetic aberrations via mutation 
landscapes [48–50]. Pitifully, less is known about the crosstalk between 
DNA Damage Repair (DDR) and TME at single-cell resolution in HCC. 
We demonstrated that the DDR status of the malignant cells are het-
erogeneous in HCC and is largely associated with tumor stages. By 
developing the DDRscore using a selected subset of genes, we showed 
tumor cells with “high-DDR” scores bear upregulated PI3K and EGFR 
signaling pathway activity. This coincides with previously findings 
showing high PI3K pathway activity is a hallmark of chemotherapy 
resistance in patients across multiple cancer including HCC [51,52]. 
Conversely, malignant cells with low DDR trigger the TRAIL pathway 
activation, and this pathway (TRAIL-TRAIL-R system) has been shown to 
facilitate tumor cell death through various systemic functional disorder 
in a tumor environment-dependent manner partially supporting our 
data wherein dynamic alteration of TME was observed [53]. This 
reduced DDR activity of malignant cells may contribute to an anti-tumor 
response synergizing with the current clinical regimes of using PARP 
inhibitors or tumor radiotherapy. Based on the DDRscore classification, 
we identified NKs and B Cells (BCs) as being the major immune cell types 
dynamically altered between “DDR-high” and “DDR-low” patients. A 
sub-population of NKs (FCGR3A+ NKs) was significantly elevated in the 
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low DDR group and was potentially involved in antigen processing and 
MHC class I-mediated presentation. Meanwhile, CD20+ BCs as being 
present in “DDR-high” patients have activated cGAS-STING pathway. 
Similarly. previous studies have shown that STING activation induces 
IL-35 secretion by BCs causing reduction the number of NKs, thereby 
suppressing the anti-tumor response [54]. In contrast, GSTA1+ NK 
subpopulation was significantly increased with high DDR levels 
revealing the existence of potential heterogeneity within a cell subset. 
Simultaneously, BCs also feature PPAR activation under DRR high 
condition suggesting a probably connection whereby PPAR signaling 
maintains the dynamic balance of liver lipid metabolism by partici-
pating in a variety of biological processes such as fatty acid oxidation, 
which involves GSTA1 during inflammatory response [55–57]. These 
together confirms the existing interplay between NKs and BCs during the 
oncogenic shift dictated by DDR status, a mechanism, by creating an 
immunosuppressive microenvironment through the lipid metabolism 
reprogramming in DDR-high patients, potentially impacts on efficacy of 
immunotherapies in HCC. 

Since immunotherapy in HCC remains dismal, several studies have 
revealed that tumor heterogeneity significantly affects the efficiency of 
immunotherapies, particularly ICIs [58]. Our follow-up study on 
immunotherapy-treated HCC patients demonstrated that DDR-directed 
malignant cell alteration being present in different patterns in the 
cellular ecosystem of HCC. In particular, at the single cell level, distinct 

DDR status exhibit dynamically altered infiltration of DCs and CD8+ T 
cells. Of the malignant cells, “high DDR” is characterized by activation 
of the EMT pathway, decreased adhesion of malignant epithelium, and 
the occurrence of invasion and metastasis. Recent research demonstrates 
that stimulation and activation of the EMT process can enhance ho-
mologous recombination-dependent DNA repair and tumor radiation 
resistance, a finding supporting our discovery [59]. In contrast, low DDR 
is characterized by a decreased propagation of malignant cells, which is 
companied by boosting of DCs and CD8+ T cells with increased 
expression of the PD-1, IDO1, LAG3, and MHC-related genes. In agree-
ment with this, attenuation of DDR activation via STING/IRF3 has been 
shown to lead to elevated DCs [60]. In addition, implementation of 
Olaparib (PARP inhibitor) to generate a low DDR environment also re-
sults in the upregulation of CD80, CD86, and MHC II expression levels 
and increased IFN-γ and TNF-α production in CD8+ T cells, further 
supporting our hypothesis [61]. In summary, our data, supported by 
previous findings, depict a low DDR TME defined by antigen 
cross-presentation via DCs and CD8+ T cells to affect tumor antigenicity. 
More importantly, radiotherapy has been shown to facilitate DNA 
damage in tumors by synergistically recruiting DCs and CD8+ T cells 
[62]. Therefore, we propose that for HCC patients with low DDR, who 
are primed to sensitize with immunotherapy may benefit from concur-
rent radiotherapy. For HCC with a high level of DDR, radiotherapy has 
the potential to reduce DDR efficacy in the first place, thereby increasing 

Fig. 6. Identification of drug targets and high DDRscore groups with high drug sensitivity in HCC. A. DDRscore calculation of 22 liver cancer cell lines in CCLE based 
on a machine learning model. B. Spearman correlation and significance between the DDRscore and protein expression levels of drug targets, represented in a volcano 
plot. Red dots indicate a positive correlation. C. Spearman correlation and significance between the DDRscore and CERES scores of drug targets, represented in a 
volcano plot. Blue dots indicate a significant negative correlation. Common targets are marked in the volcano plot. D. Heatmap shows the protein expression levels of 
21 significantly different drug targets in HCC and normal tissues. E. Difference in protein expression of BRAF between HCC and normal tissues. F. Difference in mRNA 
expression of BRAF between DDR-high and DDR-low group in TCGA-LIHC cohort. 
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tumor antigenicity by TME reprogramming and predisposing to ICI 
therapy. 

By constructing a “ligands-receptors-transcription factors-target 
genes” network for HCC in low DDR patients, we identified the 
CXCL10-CXCR3 axis as a critical driver for the interactions between DCs 
and CD8+ T cells. CXCL10 is a critical chemokine for effector T cell 
infiltration into the tumor microenvironment and immunotherapy 
effectiveness and targeting CXCL10 may have significant anti-tumor 
potential [63]. Furthermore, the production of type I interferon, 
tumor necrosis factor-α (TNF-α), and subsequent CXCL10 has been 
shown to be induced by activation of innate immune pathways involved 
in pathogen response, such as the cytosolic nucleic acid sensor 
cGAS-STING pathway linking DDR with immune regulation [64]. In 
addition, existing evidence suggests that CXCL10 can enhance the effi-
cacy of ICIs in the treatment of homologous recombination-deficient 
tumors [65], and the combination treatment of CXCL10 oncolytic 
adenovirus and PD-1 antibody can increase the recruitment of CXCR3+ T 
cells in the TME to enhance the efficacy of ICIs [65,66]. CXCR3 
expression in peripheral T cells can be used as a biomarker to predict the 
efficacy of PD-1 antibodies, and ectopic induction of intratumorally 
CXCL9/10 can help PD-1 antibodies further inhibit tumor growth by 
increasing the proportion of CXCR3+ T cells in the TME [67]. In addi-
tion, our analysis uncovers IFNG as being an essential target of the 
CXCL10-CXCR3 axis and this can be regulated by transcription factors 
GATA3, REL, and TBX21. Together, those data provide ample amount of 
evidence uncovering a potentially novel mechanism of CXCL10-CXCR3 
mediated immune regulation in DDR-low HCC patients. 

To further validate our findings concluded from our single cell 
analysis, we then developed an integration pipeline to construct a 
consensus DDRscore based on bulk-seq data. Using external bulk RNA- 
seq datasets. We built a machine learning model through the LOOCV 
framework. The advantage of the comprehensive procedure is that it can 
fit a model with consistent performance on the prognosis of HCC based 
on a variety of machine learning algorithms and their combinations, 
which can further reduce the dimensionality of variables. Intriguingly, 
the resultant 17-DDR gene signature has been shown as a decisive in-
dicator to predict the overall survival (OS) in HCC patients. The per-
formance was tested against both external and in-house dataset using 
retrospectively corrected samples assuring the robustness of the 
DDRscore under various experimental settings. This DDRscore may also 
have added values of predicting resistance to anti-PD-1 therapy in HCC 
though further clinical experimental designs need in place. More 
importantly, based on this DDRscore system, we identified the corre-
sponding druggable targets via RPPA proteomic profiles making it more 
attractive for clinical translation and implementation. Several studies 
have demonstrated that BRAF may influence the response of HCC to 
anti-cancer drugs [68,69]. Additionally, BRAF may also be a predictive 
biomarker for reduced response to sorafenib in HCC [70]. Therefore. the 
identified BRAF at both transcript and protein levels as a potential 
therapeutic target may be of proven clinical significance in directing 
HCC patient stratification who bear high DDRscores. However, further 
evidence is required to elucidate the mechanisms to allow future clinical 
experimental deign. 

On conducting these serial experiments using external database and 
in-house multi-omics experiments, we characterize a DDR-based gene 
signature systematically shedding light on the role of DNA repair 
mechanisms in HCC progression and treatment-related efficacy. These 
findings highlight the importance of DDR-induced TME alteration in 
primary and immunotherapy-treated HCC. The DDRscore developed 
may facilitate future implementation of personalized therapies 
including inhibition of ICIs and BRAF adhering to current clinical 
practice. In the future, by incorporating novel approaches from both 
single cell and spatial multi-omics perspectives, novel clinical concepts 
may be translated into advancement of precision medicine in HCC. 
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scRNA-seq Single-cell RNA sequencing 
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TRAIL: tumor necrosis factor-related apoptosis-inducing ligand 
OR odds ratio 
OS overall survival 
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SD stable disease 
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