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Abstract – Digital spatial profiling (DSP) is an emerging powerful technology for proteomics and transcriptomics
analyses in a spatially resolved manner for formalin-fixed paraffin-embedded (FFPE) samples developed by nanoString
Technologies. DSP applies several advanced technologies, including high-throughput readout technologies (digital
optical barcodes by nCounter instruments or next generation sequencing (NGS)), programmable digital micromirror
device (DMD) technology, and microfluidic sampling technologies into traditional immunohistochemistry (IHC)
and RNA in situ hybridization (ISH) approaches, creating an innovative tool for discovery, translational research,
and clinical uses. Since its launch in 2019, DSP has been rapidly adopted, especially in immuno-oncology and tumor
microenvironment research areas, and has revealed valuable information that was inaccessible before. In this article, we
report the successful setup and validation of the first DSP technology platform in China. Both DSP spatial protein and
RNA profiling approaches were validated using FFPE colorectal cancer tissues. Regions of interest (ROIs) were
selected in the areas enriched with tumor cells, stroma/immune cells, or normal epithelial cells, and multiplex spatial
profiling of both proteins and RNAs were performed. DSP spatial profiling data were processed and normalized
accordingly, validating the high quality and consistency of the data. Unsupervised hierarchical clustering as well as
principal component analysis (PCA) grouped tumor, stroma/immune cells, and normal epithelial cells into distinct
clusters, indicating that the DSP approach effectively captured the spatially resolved proteomics and transcriptomics
profiles of different compartments within the tumor microenvironment. In summary, the results confirmed the expected
sensitivity and robustness of the DSP approach in profiling both proteins and RNAs in a spatially resolved manner.
As a novel technology in highly complex spatial analyses, DSP endows refined analytical power from the tumor
microenvironment perspective with the potential of scaling up to more analyzable targets at relatively low cell input
levels. We expect that the DSP technology will greatly advance a wide range of biomedical research, especially in
immuno-oncology and tumor microenvironment research areas.
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Introduction

Since the paradigm shift to disentangle the underlying
mechanisms of oncogenesis from solely tumor-centric princi-
ples to a more conceivably dynamic interplay and crosstalk
involving normal and cancerous epithelial cells, fibroblasts,
immune cells, and extracellular matrix (ECM) back in the
mid-1980s, cumulative works were in progress to underpin
the significant roles of the tumor microenvironment (TME) in
localized neoplasm as well as a metastatic invasion [1]. Nowa-
days, research communities broadly appreciate that TME har-
bors complex populations of cell types distinctive from

normal tissues. Dysfunction and reshaping of tumor-
surrounding cell composition, networks, hypoxia, secretory
fluids as well as extracellular pH all contribute to the formation
of TME [2, 3].

Therapeutic implications derived from or hinting at TME
related mechanisms have been brought to attention. Ample
amounts of data manifested reciprocal interactions between
TME and specific anticancer agents through direct intervention
or indirect bypass effects on different cells within the microen-
vironment. By large, TME causes resistance to drugs by
(1) inducing anti-apoptotic effects to compromise the efficacy
of immunotherapies, (2) causing desmoplastic stroma which
hampers penetration of chemotherapeutic agents to actionable
sites, (3) prohibiting anticancer drug delivery through stalling*Corresponding author: zhiyong.ding@fynnbio.com
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blood supply, and (4) rendering constitutive activation of
survival signaling pathways [1, 4, 5]. On the other hand,
chemotherapy, radiotherapy, genotoxic agents, and anti-angio-
genic drugs pose negative feedback effects on TME, many of
which include reprogramming of immune cells, fibroblasts,
and interstitial humoral regulation, involving inflammatory
cytokines, tumor-initiating growth factors, and antibodies
[1, 6]. Therefore, it is not surprising from oncology perspectives
that targeting tumor-TME interactions has become a research
hotspot in the past 15 years and therapeutic interventions target-
ing tumorigenic TME have been extensively investigated. Early
phase discoveries predominantly focused on oncogenic and
angiogenic receptor tyrosine kinase (RTKs) such as epidermal
growth factor receptor (EGFR), vascular endothelial growth
factor receptor (VEGFR), and platelet-derived growth factor
receptor (PDGFR). Expression of these RTKs on designated
cells in regional and distal TME promotes tumor proliferation
and vasculogenesis, which further strengthens the concept of
mutual influence between evading cancer cells and surrounding
TME [7–9].

With rapid development and advances in immuno-
oncology, the past 10 years also witnessed an unprecedented
magnitude in immunotherapies and combinational regimes
tailored to obtain durable patient responses in various clinical
studies. This in turn fundamentally redefined our ability to fight
cancer. Two well-defined mainstream strategies to modulate
immune responses in the context of TME have brought signifi-
cant attention to date. Passive immunotherapy generally utilizes
extrinsically administrated agents such as antibodies, antibody-
drug conjugates (ADCs), tumor-infiltrating lymphocytes
(TILs) or T cells subpopulations-based cell therapies (chimeric
antigen receptor T cells, CAR-T or T cell receptor
engineered T cells, TCR-T) to directly defeat cancer cells in a
target-specific manner. On the contrary, active immunotherapy
is designed to evoke endogenous immune activity via complex
mechanisms [10]. While CAR-T based adoptive T cell therapy
(ACT) is primarily designated to treat hematopoietic cancers
and has shown its efficacy in some types of cancer such as
diffuse large B-cell lymphoma (Yescarta) and non-Hodgkin
lymphoma (Kymriah), it has not yet delivered largely convinc-
ing evidence for its applicability in patients with solid tumors
[11]. In parallel, seeking for high affinity-enhanced, tumor-
reactive TCR-T while maintaining minimal levels of off-target
toxicity in solid tumors still proved to be challenging [11]. In
solid tumors, cancerous origins are often rooted in epithelial
cells instead of immune cells, therefore there is no compensatory
human immunoglobulin administration regime existing as is the
case in B cell lymphoma therapies, making the solid tumors hard
to manipulate. As a consequence, the lack of specificity is often
accompanied by off-target toxicity leading to an array of down-
stream effects on T-cells and natural killer cells and causing
cytokine release syndrome and other related immunopathogenic
effects [12]. By nature, solid tumors also have limited trafficking
to facilitate the regional spread of those therapeutic agents,
which is even more important when treating metastatic cancer
or cancer with multiple lesions at different organ sites.
Moreover, histological heterogeneity and TME are key features
prohibitive for drugs to function. Known causations include

T cell exhaustion upon predisposition to stimulatory antigens
within confined microenvironments, which leads to restrained
T cell activities and challenges in modulating common
targetable neoantigens in different subsets of patients [11, 13,
14]. As the opposite tactic, active immunotherapy adopts the
major conceptual dogma to generate controlled and normalized
immuno-active responses to circumvent undesirable immuno-
genic effects while maintaining expected on-target effects. This
“modified” immune enhancement strategy opened up a new
avenue to explore, especially with the successful underpinning
of immune checkpoint inhibitor anti-PD-1/PDL1 therapies in
an expended spectrum of late-stage malignancies.Many of those
are solid tumors such as advanced melanoma, metastatic non-
small cell lung cancer (NSCLC), metastatic squamous-cell head
and neck carcinoma (HNSCC), hepatocellular carcinoma, renal
cell carcinoma as well as others [15–20]. The remarkable suc-
cess of this controlled immune activation further speaks to the
profound but yet ill-defined mechanisms at local TME. This
phenomenon was well supported by ample amount of evidence
indicating that only measuring tumor biomarkers much as
PD-L1 expression, tumor mutation burden (TMB), high
microsatellite instability or mismatch repair deficiency
(MSI-H)/dMMR) has limited predictive power to perfectly strat-
ify patients [21–25].

Not until a few years ago did we realize that spatially defined
phenotypic and molecular architectures may have eminent
potentials to classify solid tumors according to their distinct
characteristics. Three classes of TME outlined tumor types have
been depicted: (1) “inflamed” tumor bears highly infiltrated
immune cells and proinflammatory cytokines, (2) “immune
desert” tumor bears minimal effector immune cell infiltrates,
and (3) “immune excluded” tumor has immune cells present
in the stroma but not the tumor parenchyma [26]. In line with
this classification, by incorporating the TME information, the
tumor immunity in the microenvironment (TIME) classification
has been proposed. TIME emphasizes that resetting tumors into
a TILs and PD-L1 positive status within the TME is critical to
have pronounced immunogenic anti-tumor effects [27]. Those
findings, though preliminary, uncovered a novel landscape that
will set benchmarks for immune therapies in the future, and
henceforth a deeper understanding of the TME and tumor inter-
actions will be needed. To deconvolute mechanisms such as
molecular causations of low TILs entry into tumor enriched
regions, types of driver TILs components or cell populations
to predict therapeutic responses and their underlying phenotypic
and molecular pathways, the complexity and heterogeneity at a
single tumor lesion within individual patients, as well as the
acquired optimal synergies of immunotherapies combined with
other conventional targeted therapies, radio(chemo)therapies,
cancer vaccines, and oncolytic virus, more advanced technolo-
gies and platforms built for TME specific applications are in
urgent demand [10, 28–30].

Tissue-based high-plex molecular profiling technologies
emerged as one of the most prominent and powerful tools for
TME based analysis due to their capacity to enable protein
and RNA profiling while keeping spatial information intact.
Traditional morphological driven low-to-medium plex protein
assays such as multiplex IHC and cyclic immunofluorescence
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both rely on the cyclic collection of images and time-
consuming processes although their multiplexing capabilities
are limited to 30–60 targets per slide [31–33]. Mass spectrom-
etry (MS) based methods such as imaging mass spectrometry
(IMS), though non-biased, require heavy instrumentation and
pre-digestion as well as sophisticated setups to obtain the
best spatial resolution down to 30 lm [34–36]. Metal-isotope-
labeled MS methods such as mass spectrometry immunohisto-
chemistry (MSIHC) and multiplex ion-beam imaging (MIBI)
also require expensive instrumentation and non-standardized
laboratory procedures, and the plexing potential is plagued
around 100 at maximum with semiquantitative measuring
capacity [35, 37, 38]. From gene expression perspectives, rela-
tively low plex technologies like RNAscope has outstanding
sensitivity but cannot simultaneously profile hundreds of thou-
sands of genes. More advanced spatial transcriptome technolo-
gies such as high-definition spatial transcriptomics (HDST),
although capable of quantifying thousands of transcripts at even
a sub-cellular resolution (2 lm minimum at research level and
100 lm at a commercial level in practice), are generally incom-
patible with formalin-fixed paraffin-embedded (FFPE) tissues,
which are the most broadly available tissue type in clinical set-
tings, and have expensive reagent costs that hamper general
access for research purposes [39–41].

Digital spatial profiling (DSP) is a novel method for
medium-to-high plex spatial profiling of proteins and RNAs
compatible with FFPE samples [42]. It is developed by nano-
String technologies, Seattle, WA, to empower quantification
of proteins and RNAs under the same experimental setup,
which is rather simplified with outstanding precision due to
its bona fide molecular barcode counting technology proprietar-
ily designed [43, 44]. One superior advantage of DSP over
other technologies in the same category is the capacity to com-
partmentalize user-defined region of interests (ROIs) in spatial-
directed patterns using multiple fluorescence labeling and in the
meantime enabling more than 100-plex protein and 1,800-plex
RNA analysis [42, 45, 46]. Using this technology, Dimm’s
group proved its robustness by comparing it with quantitative
immunofluorescence (QIF) and by profiling 44 immune mark-
ers in pure compartments consisting of macrophage, leukocyte,
and tumor respectively in a melanoma TMA cohort receiving
checkpoint inhibitor therapies. They found the PD-L1 expres-
sion in the macrophage could potentially serve as a sole predic-
tive biomarker for progression-free survival PFS, overall
survival OS, and response [47]. Similarly in NSCLC patient
cohorts, by pre-defined compartmentalization, they also identi-
fied a group of biomarkers that potentially play significant prog-
nostic roles [48]. Moreover, two studies also used DSP to probe
the spatially guided expression patterns of B lymphocytes
within the tertiary lymphoid structures (TLSs) in the TME that
are predictive of good patient responses. They found distinct B
cell subsets in TME defined by higher proliferative capacity
with higher Ki67 and CD40 expression, whereas pre-filtrating
T cell populations within tumor areas have higher expression
of TIM3, PD1, and GZMB indicative of poor response to
immunotherapies [49, 50]. These findings together strengthen
the necessity of incorporating spatial information with high-
plex expression profiling, a new territory that is unexplorable
using conventional methods, but one that will deepen our

understanding of TME based research leading to the ultimate
improvement of immunotherapies.

Technical briefs of DSP

DSP combines conventional immunofluorescence tech-
niques with digital barcoded antibodies or oligonucleotides to
allow morphologically outlined and high-plex expression profil-
ing. The experimental procedure starts with routine 5 lm FFPE
or fresh-frozen tissue sections mounted on charged slides. A
multi-color fluorescence staining mixture (up to 4) with addi-
tional high-plex probe sets (oligo-conjugated antibodies or tar-
get specific oligos) designed to suit experimental needs either
for proteins or RNAs respectively is incubated with the slides
(similar to conventional immunofluorescence or IHC). This
one-step incubation is then followed by high-resolution scan-
ning using the DSP instrument to allow ultimate precision for
ROI selection. ROI selection accepts various user-defined con-
tours from circle to any polygon shapes. The collection of dig-
ital probes within ROIs is performed by a micro-sized
programmable digital micromirror device (DMD) which sheds
UV light on selected ROIs to release the photocleavable oligos.
Released oligo probes are aspirated via a capillary sipper
sequentially. The resultant single strand oligos are then hybri-
dized to target specific fluorescence reporter probes to enable
digital counting performed by the nanoString nCounter digital
barcode counting system, and the numerally transformed read-
ings directly reflect the expression level of targets [44].
The schematic presentation of the DSP workflow is shown in
Figure 1. The accompanying video demonstrates a visual proto-
col of the DSP approach (Video 1).

Methods in brief

Validation of DSP performance with cell lines

Two high-density homogenous HEK293 cell microarray
slides obtained from nanoString were used to validate the
DSP approach at Mills Institute for Personalized Cancer Care
(MIPCC), Fynn Biotechnologies (FynnBio). The DSP core
protein module (Immune Cell Core Profiling) consisting of
20 specific antibodies for immune-related targets and a standard
morphology panel comprising Pan-Cytokeratin (Pan-CK,
marker for epithelium cells/tumor cells), CD45 (marker for
immune cells) and SYTO13 (nuclei) were used for the valida-
tion (for the full list of core protein targets and other details,
refer to nanoString websites https://www.nanostring.com).
Three circular ROIs on each slide spanning from the diameter
range of 200 lm, 400 lm, and 600 lm were selected respec-
tively, and subject to downstream DSP processes.

Spatial profiling of protein and RNA of colorectal

cancer tissue using DSP

We used serial sections of a colorectal cancer FFPE tissue
mounted on slides to validate the spatial profiling of both
protein and RNA by the DSP approach. FFPE slides went
through conventional tissue pre-processing (deparaffinization
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epithelial and tumoral regions, CD45 for immune cells, and
nuclear stain SYTO13 for tri-colored tissue compartmentaliza-
tion as ROI selection references. Twelve circular ROIs on each
slide were drawn and selected. For protein profiling, the areas of
selected ROIs were between 20,000 and 120,000 lm2. For RNA
profiling, due to the relatively low counts compared to proteins,
ROIs were selected between 38,000 and 380,000 lm2 to ensure
successful quality controls in data analysis. All oligos from
48 ROIs for protein profiling and 48 ROIs for RNA profiling
were collected into 96-well plates using the proprietary
UV-guided technology in the DSP approach. Resultant oligos
representing individual targets for individual ROIs were pooled
together by column, hybridized to the beads-on-string barcoded
counterpart oligos, and counted by nanoString nCounter.

Data processing and statistical analysis

Raw reporter code count (RCC) files generated by
nCounter were transformed into tabulated excel files with all
interpretable values presented for all ROIs. External RNA

Figure 1. Schematic diagram of DSP workflow. 1. FFPE tissue sections mounted on slides are processed by standard IHC procedure and
incubated with morphology marker reagents (fluorescence-labeled antibodies or dyes) and a mix of oligo conjugated antibodies. 2. High-
quality images up to four channels of fluorescence are obtained. 3. ROIs are selected on the DSP instruments based on the morphological
fluorescence marker. 4. Oligos in specific ROIs are released by UV light and collected by a microcapillary tube and dispensed into 96-well
plates for subsequent processing. This oligo release and collection cycle is repeated for each ROI. 5. Digital counting by nCounter instruments
to generate protein or RNA profiling data in a spatially resolved manner. Alternatively, highly multiplexed RNA profiling could be achieved
using specific sequence adaptors (Unique Dual Index UDI) to allow NGS readout.

Video 1. A visual protocol of the Digital Spatial Profiling (DSP) 
Approach. https://vcm.edpsciences.org/10.1051/vcm/2020002#V1

and rehydration). For protein profiling, 20-plex immune cell 
profiling core module plus 2 additional modules (IO Drug 
Target and Immune Cell Typing), each containing about 
10 targets were used. For RNA profiling, the immune pathways 
module with a 96-plex RNA probe set was used. In both profil-
ing approaches, we applied the same standard fluorescence-
labeled morphology marker panel consisting of Pan-CK for
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Controls Consortium (ERCC)) internal spike-in negative and
positive controls were used to assess data quality and the perfor-
mance of each experiment. Based on the values of ERCC
normalization factors, a range between 0.3 and 3 for individual
ROIs was chosen to eliminate outliers that are incompatible for
downstream analysis. To filter out any skewness of the data,
minimum nuclei count of 20 and surface area of 1,600 lm2

were set for protein profiling and minimum nuclei count of
200 and surface area of 6,000 lm2 for RNA profiling. Data that
pass quality control (QC) were then normalized by the geomet-
ric mean of selected housekeeping gene expression counts.
UBB, RAB7A, OAZ1, POLR2A, and SDHA were used to
normalize nCounter counts for RNA profiling. S6, Histone
H3, and GAPDH were used to normalize for protein profiling.
Normalized data were then log-transformed and subject to
further analysis. For statistical analyses, paired t-tests (intra-
slide ROIs) and unpaired t-tests (inter-slide ROIs) were used
to test differential expression profiles. False discovery rate
(FDR) was adjusted using the Benjamini-Hochberg method

and all p values were set to 0.05 as the cutoff. For unsupervised
hierarchical clustering, log transformed data were median-cen-
tered before plotting. All unsupervised clustering and principal
component analysis (PCA), statistical calculations, and all
graphical presentations were conducted using R graphical user
interfaces (GUIs).

Results of DSP workflow validation

Two FFPE HEK293 cell pellet slides were used at MIPCC
to validate the DSP protein profiling workflow, with the core
protein module consisting of 20 antibodies, together with
IO Drug Target module and Immune Cell Typing module
(38 antibodies in total). The quantification capability of the
approach was assessed by measuring the readouts generated
from three ROIs at different sizes (200 lm, 400 lm, and
600 lm in diameter) (Fig. 2A). For proteins with known expres-
sion in HEK293 cells, nCounter counts from ROIs with different
sizes showed a linear increase when plotted against the area of

Figure 2. Validation of the DSP protein profiling workflow. (A) ROI selection of FFPE HEK293 cell pellet slides. Circular ROIs of three
different sizes (200 lm, 400 lm, or 600 lm in diameter) were selected on each slide, labeled as 001, 002, and 003, respectively. Cell nuclei
were stained by STYO13 (blue) and cells were stained by fluorophore-labeled Pan-CK antibody (green). (B) Upper panel: Correlation of
nCounter counts (y-axis) and ROI area (x-axis). Lower panel: nCounter counts of Ki-67 and Beta-2 microglobulin from three ROIs of different
sizes normalized with housekeeping genes in duplicate slides (green and orange). (C) Volcano plot and box plots of individual proteins in
HEK293 cells from duplicate slides. LogFC > 1 and p-value < 0.05 are denoted as significant. Data are FDR adjusted with blue and yellow
representing individual slides.
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Figure 3. Validation of the DSP protein and RNA profiling approaches using colorectal cancer tissues. (A) ROI selection of normal, tumor,
and stromal cells on FFPE tissue slides. Morphology markers (SYTO13 for nuclei staining, blue; Pan-CK for tumor/ epithelial cells, green;
CD45 for immune cells, red) were used to guide 12 ROI selections of tumor, stroma, or normal epithelial cells enriched areas. Based on the
abundance of tumor-infiltrating lymphocytes (TILs), 2 stromal TILs low, 2 stroma TILs medium, and 2 stroma TILs high ROIs were selected.
Two sets of ROIs at the same locations were selected from 2 serial sections of the FFPE tissue for protein and RNA profiling, respectively.
(B) Unsupervised hierarchical clustering of 12 ROIs representing different histological regions (normal epithelial cells, tumor, and stroma)
based on 38-plex protein profiling. ROIs belonging to the same group are color-coded. (C) PCA clustering of different group assignments in
protein profiling. Groups represents ROIs from different histological regions. (D) Unsupervised hierarchical clustering of 12 ROIs representing
different histological regions (normal epithelial cells, tumor, and stroma) based on 78-plex RNA profiling. ROIs belonging to the same group
are color-coded. (E) PCA clustering of different group assignments in RNA profiling. Groups represent ROIs from different histological
regions.
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the ROIs. Two representative proteins (high and medium count
values), Ki-67 (Cor = 0.9771) and Beta-2 microglobulin
(Cor = 0.9737) are shown in Figure 2B. Upon housekeeping
gene normalization using S6, Histone H3, and GAPDH, the
size-oriented effects were removed allowing direct inter-ROI
comparison of protein expression, which in this case had no
statistically significant difference as expected (Fig. 2B, lower
panel). On this basis, by pooling normalized counts from three
ROIs within each slide, no protein was differentially expressed
between the duplicated slides under log2 fold-change (Log
FC) > 1 and adjusted p-value < 0.05 as cutoffs (Fig. 2C). Taken
together, our data proved the reliability of the DSP technology
and ensured our follow-up studies on tissue-based assays.

Validation of DSP on colorectal cancer tissues

To gain further insight into the validity of DSP on tissue-
based assays, we used two serial sections of a colorectal cancer
FFPE tissue to allow protein and RNA profiling in parallel to
directly compare expression at transcript and protein levels.
To generate biologically meaningful data, we selected 12 ROIs
on each slide at different histological regions according to
fluorescence-guided staining and annotated as different groups
for clustering analysis. Representative scans and ROIs selected
are graphically demonstrated in Figure 3A. We first carried
out ROI selection for RNA profiling and then cross-referenced
them to all ROIs for the protein profiling and this ensured a
direct in-situ comparison between RNA and protein expression
at this sub-histological level. For both protein and RNA profil-
ing, unsupervised hierarchical clustering assigned tumor,
stroma, and normal epithelial cells into distinct groups.
(Figs. 3B and 3D). In addition, stroma ROIs with a different
abundance of tumor-infiltrating lymphocytes (TILs) were also
effectively clustered. These clearly defined clusters were also
reflected by the PCA data with clearly separated tumoral and
stromal groups (Figs. 3C and 3E). Within the stroma compart-
ment, as our ROI selection criteria were primarily based on
immune cell-enriched regions, our data demonstrated a great
concordance as indicated by high CD4, CD3, and CD8 expres-
sion at the protein level and CD4 and CD8A at the RNA level.
Again, higher Pan-Ck protein expressions were observed at both
tumor and normal epithelial regions whereas tumor regions
featured relatively higher Ki-67 and AKT indicating high prolif-
erating potentials. Moreover, normal epithelial regions had
generally higher effective infiltrated immune cells as compared
to corresponding tumor regions as indicated by the expression of
Granzyme B and CD8 at the protein level (Fig. 3D). Those find-
ings together reconfirmed the robustness of this assay.

Discussion

To validate the DSP technology platform, we performed
DSP spatial profiling for both protein and RNA using FFPE
colorectal cancer tissues mounted on slides. Regions of Interest
(ROIs) were selected in the areas enriched with tumor cells,
stroma/immune cells, or normal epithelial cells on serial
sections of the tissue to compare protein data with RNA data.
Currently, no parallel technology could facilitate proteogenomic

characterization at this sub-histological resolution. The results
showed that the DSP spatial profiling data were of high quality
and consistent after standard normalization and process. Results
of further analyses including unsupervised hierarchical cluster-
ing and PCA demonstrated that ROIs from the tumor, stroma/
immune cells, and normal epithelial cells were grouped into
distinct clusters, indicating that the specific protein or RNA
expression information from different cellular contexts on the
slides was precisely captured. Though our demonstrative work
is simple, many other sophisticated approaches of DSP usage
have been demonstrated elsewhere [42, 51–53]. Several ROI
selection strategies are available to suit various research
needs such as global deep profiling for full tissue sections,
segmentation mode for precise analysis between tissue com-
partments, and rare cell profiling mode [42]. In our experience,
even at a low cell input level, DSP could still perform well but
our work is currently limited to cell line data with more to
elucidate at the tissue level and that could hopefully inform
us more on the technical robustness and multiplexing capacity
in the future. Our tissue work aimed to assess the reliability of
the assay and by profiling only 12 ROIs with very few repli-
cates within each group, we were able to show the very clear
separation of predefined groups (normal, tumor-enriched, and
immune-enriched regions) based on both transcript and protein
levels proving the assay reliability.

The latest development of DSP is to couple with NGS and
thus to expand the multiplexing capabilities for RNA profiling
[42]. Currently, commercially available detectable targets are
around 100 for proteins and 1,800 for RNAs covering
comprehensive key genes in oncology, immune-oncology, as
well as many other pathways in cancer. Future development
to cover the full gene expression spectrum is underway.

As an innovative research tool, DSP holds multiple attri-
butes that are unmet by many parallel technologies. First,
accredited by its proprietary barcode technology, it is applicable
to measuring both proteins and RNA in-situ in a highly quan-
titative manner. We have tested in our hand the quantification
capability of DSP for proteogenomic analysis and both levels
have shown reliable data respectively. Secondly, this is one
of the very few technologies dedicated to high-plex FFPE sam-
ples profiling at sub-spatial resolution and this significantly
broadens the application potential of the technology [46].
Thirdly, customizable fluorescence-guided morphology mark-
ers allow computationally defined segmentation within ROIs
facilitating further purification of samples and/or rare cells to
be analyzed at user’s choices. Lastly, unlike laser captured
microdissection (LCM), samples remain intact during the entire
workflow allowing other downstream application of samples
such as IHC and conventional HE staining. When the slides
are available, HE staining is recommended to provide addi-
tional information. On the contrary, DSP also bears certain
limitations. Its resolution cannot reach the single-cell level
though computational-based inference tools may be applied in
the near future based on bulk transcription profiling data [54].
Though near single-cell sensitivity for some specific protein
was achieved by others and in our hands (data not shown), a
better signal-noise ratio for certain antibody probes may need
to be improved, [42]. Currently, an alternative method is to
select multiple rare cells containing ROIs a user-defined
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phenotype group to obtain sufficient counting. Expansion of
protein targets is also essential for higher plexing needs. More-
over, the future direction of integrating DSP with other spatial
analysis software may help obtain multi-dimensional data for
advanced analysis [54].

Conclusion

DSP developed by nanoString, is a groundbreaking technol-
ogy providing insights into a wide range of biomedical
research, especially immuno-oncology and tumor microenvi-
ronment areas. DSP integrates multiple cutting-edge technolo-
gies, including high-throughput detection technologies (NGS
or digital optical barcodes), programmable DMD technologies,
and microfluidic sampling, into traditional IHC and RNA in situ
hybridization (ISH) approaches, creating an innovative tool for
spatial-resolved proteomics and transcriptomics analyses on
FFPE samples as well as fresh frozen tissues. We set up the first
DSP platform in China at MIPCC, FynnBio in 2019, right after
nanoString Technologies launched the technology. As an early
method establishment approach, we have validated this innova-
tive technology platform demonstrating the expected sensitivity
and robustness of the approach. We expect that the DSP plat-
form will greatly advance biomedical research especially in
immuno-oncology and tumor microenvironment areas.

Though the limitation of numbers of cells in selected ROIs,
discrete cells labeled by specific morphology marker could still
be collected and counted sufficiently. Currently, up to 2,000
RNAs could be detected for each ROI because of the replace-
ment of the readout method, and panels for the entire transcrip-
tome or even genome could go into service in the foreseeable
future.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Maman S, Witz IP. A history of exploring cancer in context. Nat
Rev Cancer. 2018;18(6):359–76.

2. Joyce JA, Pollard JW. Microenvironmental regulation of
metastasis. Nat Rev Cancer. 2009;9(4):239–52.

3. Ghirelli C, Hagemann T. Targeting immunosuppression for
cancer therapy. J Clin Invest. 2013;123(6):2355–7.

4. Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death
in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

5. Shiao SL, Coussens LM. The tumor-immune microenvironment
and response to radiation therapy. J Mammary Gland Biol
Neoplasia. 2010;15(4):411–21.

6. Katz OB, Shaked Y. Host effects contributing to cancer therapy
resistance. Drug Resist Updat. 2015;19:33–42.

7. Pegram M, Slamon D. Biological rationale for HER2/neu
(c-erbB2) as a target for monoclonal antibody therapy. Semin
Oncol. 2000;27(5 Suppl 9):13–9.

8. Jain RK. Normalizing tumor microenvironment to treat cancer:
bench to bedside to biomarkers. J Clin Oncol. 2013;31(17):
2205–18.

9. Nguyen AN, Stebbins EG, Henson M, et al. Normalizing the
bone marrow microenvironment with p38 inhibitor reduces
multiple myeloma cell proliferation and adhesion and suppresses
osteoclast formation. Exp Cell Res. 2006;312(10):1909–23.

10. Sanmamed MF, Chen L. A paradigm shift in cancer
immunotherapy: From enhancement to normalization. Cell.
2019;176(3):677.

11. Weber EW, Maus MV, Mackall CL. The emerging landscape of
immune cell therapies. Cell. 2020;181(1):46–62.

12. Kennedy LB, Salama AKS. A review of cancer immunotherapy
toxicity. CA Cancer J Clin. 2020;70(2):86–104.

13. Wherry EJ, Blattman JN, Murali-Krishna K, et al. Viral
persistence alters CD8 T-cell immunodominance and tissue
distribution and results in distinct stages of functional impair-
ment. J Virol. 2003;77(8):4911–27.

14. Schumacher TN, Schreiber RD. Neoantigens in cancer
immunotherapy. Science. 2015;348(6230):69–74.

15. Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1
Blockade in resectable lung cancer. N Engl J Med. 2018;378(21):
1976–86.

16. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab
for recurrent squamous-cell carcinoma of the head and neck.
N Engl J Med. 2016;375(19):1856–67.

17. Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with
advanced gastric or gastro-oesophageal junction cancer refractory
to, or intolerant of, at least two previous chemotherapy regimens
(ONO-4538-12, ATTRACTION-2): a randomised, double-blind,
placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):
2461–71.

18. Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus
ipilimumab for advanced melanoma: final overall survival
results of a multicentre, randomised, open-label phase 3 study
(KEYNOTE-006). Lancet. 2017;390(10105):1853–62.

19. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients
with advanced hepatocellular carcinoma (CheckMate 040): an
open-label, non-comparative, phase 1/2 dose escalation and
expansion trial. Lancet. 2017;389(10088):2492–502.

20. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint
blockade. Science. 2018;359(6382):1350–5.

21. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden
and response rate to PD-1 inhibition. N Engl J Med. 2017;
377(25):2500–1.

22. Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker
modalities for predicting response to PD-1/PD-L1 checkpoint
blockade: A systematic review and meta-analysis. JAMA
Oncol. 2019;5(8):1195–1204.

23. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade
induces responses by inhibiting adaptive immune resistance.
Nature. 2014;515(7528):568–71.

24. Spranger S, Luke JJ, Bao R, et al. Density of immunogenic
antigens does not explain the presence or absence of the T-cell-
inflamed tumor microenvironment in melanoma. Proc Natl
Acad Sci USA. 2016;113(48):E7759–E68.

25. Danilova L, Wang H, Sunshine J, et al. Association of PD-1/
PD-L axis expression with cytolytic activity, mutational load,
and prognosis in melanoma and other solid tumors. Proc Natl
Acad Sci USA. 2016;113(48):E7769–E77.

26. Chen DS, Mellman I. Elements of cancer immunity and the
cancer-immune set point. Nature. 2017;541(7637):321–30.

27. Zhang Y, Chen L. Classification of advanced human cancers
based on Tumor Immunity in the MicroEnvironment (TIME) for
cancer immunotherapy. JAMA Oncol. 2016;2(11):1403–4.

8 N. Wang et al.: Vis Cancer Med 2021, 2, 1



28. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of
cancer immunotherapy: microenvironment-targeting combina-
tions. Cell Res. 2020;30(6):507–19.

29. Harrington KJ, Puzanov I, Hecht JR, et al. Clinical development
of talimogene laherparepvec (T-VEC): a modified herpes
simplex virus type-1-derived oncolytic immunotherapy. Expert
Rev Anticancer Ther. 2015;15(12):1389–403.

30. Pan RY, Chung WH, Chu MT, et al. Recent development and
clinical application of cancer vaccine: targeting neoantigens.
J Immunol Res. 2018;2018:4325874.

31. Lin JR, Izar B, Wang S, et al. Highly multiplexed immunoflu-
orescence imaging of human tissues and tumors using t-CyCIF
and conventional optical microscopes. Elife. 2018;7.

32. Stack EC, Wang C, Roman KA, et al. Multiplexed immuno-
histochemistry, imaging, and quantitation: a review, with an
assessment of Tyramide signal amplification, multispectral
imaging and multiplex analysis. Methods. 2014;70(1):46–58.

33. Dixon AR, Bathany C, Tsuei M, et al. Recent developments in
multiplexing techniques for immunohistochemistry. Expert Rev
Mol Diagn. 2015;15(9):1171–86.

34. Walch A, Rauser S, Deininger SO, et al. MALDI imaging mass
spectrometry for direct tissue analysis: a new frontier for
molecular histology. Histochem Cell Biol. 2008;130(3):421–34.

35. Giesen C, Wang HA, Schapiro D, et al. Highly multiplexed
imaging of tumor tissues with subcellular resolution by mass
cytometry. Nat Methods. 2014;11(4):417–22.

36. Aichler M, Walch A. MALDI Imaging mass spectrometry:
current frontiers and perspectives in pathology research and
practice. Lab Invest. 2015;95(4):422–31.

37. Ahmed M, Broeckx G, Baggerman G, et al. Next-generation
protein analysis in the pathology department. J Clin Pathol.
2020;73(1):1–6.

38. Angelo M, Bendall SC, Finck R, et al. Multiplexed ion beam
imaging of human breast tumors. Nat Med. 2014;20(4):436–42.

39. Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ
RNA analysis platform for formalin-fixed, paraffin-embedded
tissues. J Mol Diagn. 2012;14(1):22–9.

40. Stahl PL, Salmen F, Vickovic S, et al. Visualization and
analysis of gene expression in tissue sections by spatial
transcriptomics. Science. 2016;353(6294):78–82.

41. Vickovic S, Eraslan G, Salmen F, et al. High-definition spatial
transcriptomics for in situ tissue profiling. Nat Methods.
2019;16(10):987–90.

42. Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial
profiling of proteins and RNA in fixed tissue. Nat Biotechnol.
2020;38(5):586–99.

43. Lee J, Geiss GK, Demirkan G, et al. Implementation of a
multiplex and quantitative proteomics platform for assessing
protein lysates using DNA-barcoded antibodies. Mol Cell
Proteomics. 2018;17(6):1245–58.

44. Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed
measurement of gene expression with color-coded probe pairs.
Nat Biotechnol. 2008;26(3):317–25.

45. Beechem JM. High-plex spatially resolved rna and protein
detection using digital spatial profiling: A technology designed
for immuno-oncology biomarker discovery and translational
research. Methods Mol Biol. 2020;2055:563–83.

46. Decalf J, Albert ML, Ziai J. New tools for pathology: a user’s
review of a highly multiplexed method for in situ analysis of
protein and RNA expression in tissue. J Pathol. 2019;247(5):
650–61.

47. Toki MI, Merritt CR, Wong PF, et al. High-plex predictive
marker discovery for melanoma immunotherapy-treated patients
using digital spatial profiling. Clin Cancer Res. 2019;25(18):
5503–12.

48. Zugazagoitia J, Gupta S, Liu Y, et al. Biomarkers associated
with beneficial PD-1 checkpoint blockade in Non-Small-Cell
Lung Cancer (NSCLC) identified using high-plex digital spatial
profiling. Clin Cancer Res. 2020.

49. Sautes-Fridman C, Petitprez F, Calderaro J, et al. Tertiary
lymphoid structures in the era of cancer immunotherapy. Nat
Rev Cancer. 2019;19(6):307–25.

50. Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary
lymphoid structures promote immunotherapy response. Nature.
2020;577(7791):549–55.

51. Amaria RN, Reddy SM, Tawbi HA, et al. Neoadjuvant immune
checkpoint blockade in high-risk resectable melanoma. Nat
Med. 2018;24(11):1649–54.

52. Rozeman EA, Prevoo W, Meier MAJ, et al. Phase Ib/II trial
testing combined radiofrequency ablation and ipilimumab in
uveal melanoma (SECIRA-UM). Melanoma Res. 2020;30(3):
252–60.

53. Farren MR, Sayegh L, Ware MB, et al. Immunologic alterations
in the pancreatic cancer microenvironment of patients treated
with neoadjuvant chemotherapy and radiotherapy. JCI. Insight.
2020;5(1).

54. Koelzer VH, Sirinukunwattana K, Rittscher J, et al. Precision
immunoprofiling by image analysis and artificial intelligence.
Virchows Arch. 2019;474(4):511–22.

55. Van TM, Blank CU. A user’s perspective on GeoMxTM digital
spatial profiling. Immuno-Oncol Technol. 2019;1:11–8.

Cite this article as: Wang N, Wang R, Zhang X, Li X, Liang Y & Ding Z. Spatially-resolved proteomics and transcriptomics: An
emerging digital spatial profiling approach for tumor microenvironment. Visualized Cancer Medicine. 2021; 2, 1.

N. Wang et al.: Vis Cancer Med 2021, 2, 1 9


	Introduction
	Technical briefs of DSP

	Methods in brief
	Validation of DSP performance with cell lines
	Spatial profiling of protein and RNA of colorectal cancer tissue using DSP
	Data processing and statistical analysis

	Results of DSP workflow validation
	Validation of DSP on colorectal cancer tissues

	Discussion
	Conclusion
	Conflict of interest
	References

