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Leukemia is a type of malignant clonal disease of hematopoietic stem cells (HSCs). A small population
of leukemic stem cells (LSCs) are responsible for the initiation, drug resistance, and relapse of leukemia.
LSCs have the ability to form tumors after xenotransplantation in immunodeficient mice and appear
to be common in most human leukemias. Therefore, the eradication of LSCs is an approach with the
potential to improve survival or even to cure leukemia. Using recent research in the field of LSCs, we
summarize the targeted therapy approaches for the removal of LSCs through surface markers including
immune checkpoint molecules, pathways influencing LSC survival, or the survival microenvironment
of LSCs. In addition, we introduce the survival microenvironment and survival regulation of LSCs.
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Leukemia is a type of malignant clonal disease of HSCs. Accord-
ing to the differentiation degree and natural course of leukemia,
it can be divided into acute and chronic disease. Clonal leukemia
cells proliferate and accumulate in bone marrow (BM) and other
hematopoietic tissues because of mechanisms such as uncon-
trolled proliferation, blocked differentiation, and decreased
apoptosis. These leukemia cells also infiltrate other tissues and
organs, while normal hematopoiesis is inhibited [1]. The differ-
entiation of acute myeloid leukemia (AML) cells stagnates during
the early stages, producing mainly primitive and early cells, and
the disease develops rapidly over the course of only a few months
[2]. Thus, AML is characterized by a block in mature myeloid dif-
ferentiation that is sustained by LSC self-renewal. Chronic mye-
loid leukemia (CML) is a clonal myeloproliferative disorder of
LSCs, characterized by generation of the BCR-ABL oncogene
[3]. Hence, LSC-derived AML and CML are characterized by
uncontrolled expansion of BM progenitor cells, showing more
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or less serious defects in LSC maturity, respectively [1,4]. The
treatment outcome of patients with AML depends on several fac-
tors, including karyotype and molecular alterations in the leuke-
mic cell bulk. Combination chemotherapy leads to complete
remission (CR) in most patients with AML [5]. However, ~50%
of patients achieving CR relapse within 5 years of their initial
diagnosis. This recurrence of the disease is believed to be caused
by chemotherapy-resistant LSCs [6–8]. The introduction of BCR/
ABL-specific tyrosine kinase inhibitors (TKIs) approximately two
decades ago dramatically improved the outcome of patients with
CML. However, disease-initiating LSCs in CML are resistant to
TKIs despite BCR-ABL inhibition. Consequently, an important
area of unmet clinical need in CML and AML is to directly target
LSCs to overcome drug resistance.

The concept of LSCs is based on several studies, which showed
that only a small number of leukemic cells can proliferate widely
in vitro and in vivo [8–11]. LSCs are thought to originate from
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normal hematopoietic stem/precursor cells, which are character-
ized by self-renewal and differentiation potential [12–16]. Mean-
while, LSCs rely on other tissues and the microenvironment in
which they live to avoid being killed by chemotherapeutic drugs
or radiotherapy, resulting in drug resistance [17]. Moreover,
related research has found that LSCs use adipose tissue to avoid
killing by chemotherapeutic drugs [18]. Based on their
leukemia-initiating and propagating capacity, LSCs are regarded
as a major, clinically relevant therapeutic cell targets. Therefore,
identifying new therapeutic approaches to eradicating LSCs is
crucial [11]. In this review, we explore research on targeting LSCs
from three aspects: surface markers, related pathways, and the
microenvironment.

Survival microenvironment of LSCs
LSCs are regulated by the cellular and molecular components of
the microenvironment, and microenvironmental interactions
can protect LSCs from conventional and targeted therapy [19].
LSCs occupy endosteal and sinusoidal niches in the BM as well
as HSCs [20]. Endosteal niches of HSCs are formed and regulated
by osteoblasts, which result in HSC homing, promoting self-
renewal of HSCs, affecting both the canonical and noncanonical
wingless-type (WNT) signaling pathways, mesenchymal stromal
cells (MSCs, regulating the survival and maintenance of HSCs),
FIGURE 1
The bone marrow (BM) endosteum and sinusoids as two crucial niches for hema
of HSCs are formed and regulated by osteoblasts, mesenchymal stromal cells (M
By contrast, the endosteal niche of LSCs is associated with MSCs and osteoblast
form a sinusoidal niche with sinus endothelial cells and perivascular stromal ce
endothelial cells.
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osteoclasts (retaining HSCs in endosteal niches, regulation of
HSC quiescence, and inducing migration of HSCs out of niches),
reticular cells, macrophages, and regulatory T cells (Tregs). By
contrast, the endosteal niche of LSCs is associated with MSCs
and osteoblasts, in which LSCs surviving in a quiescent state
are resistant to therapy. The sinusoidal niche of HSCs is formed
with sinus endothelial cells and perivascular stromal cells
expressing leptin receptor (lepR + ), whereas LSCs are related to
sinusoidal endothelial cells (Fig. 1). BM homing is an important
biological process for HSC function, and is governed by a cascade
of molecular interactions [21]. First, migrating cells are captured
from the fluid stream onto BM tissue endothelium. After inti-
mate contact with the endothelium, cells are exposed to chemi-
cal signals (principally chemokines, but also other cytokines and
inflammatory agents), resulting in the upregulation of integrin
adhesiveness, which leads to firm adhesion, followed by
endothelial transmigration. Finally, HSCs home and locate to
BM niches. Besides regulating HSC functions, the BM niche
might similarly regulate the functions of LSCs. Studies have
demonstrated that both endosteal and sinusoidal niches are cru-
cial for LSC survival, proliferation, differentiation, and drug resis-
tance [16,22–24]. Moreover, this research indicates that the
interaction of human LSCs with the hematopoietic microenvi-
ronment, mediated by prosurvival cell adhesion, is an underly-
Drug Discovery Today
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ing mechanism for resistance to cell cycle-dependent cytotoxic
chemotherapy [25]. Therefore, the microenvironment of LSCs
could be a suitable therapeutic target.
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Molecular mechanisms controlling LSC growth and
survival
It is well known that LSCs originate from genetic abnormalities
of HSCs. Hence, LSCs share many characteristics with HSCs, such
as capacity for self-renewal, the ability to give rise to new
hematopoietic tissues, and an immunophenotype similar to
HSCs (CD34+, CD38–, CD71–, and HLA-DR–). In addition, LSCs
can be phenotypically distinguished from HSCs with aberrant
expression of several cell surface antigens, such as CD123;
CD25; CD9; CD93; CD96; and immune checkpoint antigens,
such as CD274 (PD-L1), CTLA4, and TIM-3 [26] (Table 1). In cer-
tain types of leukemia, some LSCs might even reside in a CD34-
negative compartment. Several studies have described pathways
that might influence LSC survival, such as Wnt/b-catenin,
canonical circadian pathway, trans-chromatin regulatory path-
way, and the PTEN-C/EPBa-CTNNA1, PI3K/AKT/MTOR, JAK2-
STAT3 and WNT/JAK2 pathways [22,27–31]. For example,
increasing evidence suggests that Wnt/b-catenin signaling has
an important role in the development of AML and CML
[32,33]. In mouse models of AML induced by co-expression of
Hoxa9 and Meis1a oncogenes or by fusion oncoprotein MLL/
AF9, the Wnt/b-catenin signaling pathway is required for self-
renewal of LSCs that are derived from either HSC or granulo-
FIGURE 2
Leukemic stem cells (LSCs) originate from genetic abnormalities of hematopoietic
survival and self-regulation of LSCs.

TABLE 1

Expression of cell surface markers (CD25, CD96, and CD123) of LSC

Target/Marker CD CML LSCs

IL-2RA CD25 +++++
Tactile CD96 +
IL-3RA CD123 +++++

a Expression score: +++++, expressed on LSCs in >90% of all patients/donors; ++++, expressed on
on LSCs in 15–50% of donors; +, expressed on LSCs in <15% of donors.
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cyte–macrophage progenitors (GMPs). During leukemogenesis,
b-catenin is essential for AML initiation from HSCs or GMPs
[34]. Similarly, it has been demonstrated that b-catenin and
Wnt pathway-associated genes are highly expressed in LSCs com-
pared with normal HSCs in CML [35–38]. BCR-ABL stimulates
transcription of arachidonate 5-lipoxygenase (Alox5) to jointly
form a unique pathway that is crucial for survival regulation of
LSCs of CML, with a minimal role in normal HSCs [39,40]. Alox5
has been shown to have important roles in many signaling path-
ways, such as p53, NF-jB, and PI3K [41–43].

In addition, Park et al. reported that Krüppel-like factor 4
(KLF4) represses the dual-specificity-tyrosine-phosphorylation-re
gulated kinase 2 (DYRK2) gene in LSCs to prevent abrogation of
self-renewal and survival [44]. In summary, the survival of LSCs
is inseparable from the regulation of genes, and their self-
renewal requires special pathways (Fig. 2). These pathways and
genes could provide us withmore appropriate therapeutic targets.
Targeting surface markers of LSCs
CD123
CD123, or interleukin 3 receptor (IL-3Ra), is a glycoprotein on
the cell membrane with a unique a chain paired with a b subunit,
and belongs to the type I cytokine receptor family. CD123 can be
detected on the surface of blasts in most patients with AML with
significantly higher expression levels compared with normal
CD34+ hematopoietic progenitors [45]. Many studies have
explored CD123 expression at the level of leukemic progenitor/
Drug Discovery Today
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stem cells, mainly contained in the CD34+/CD38– cell fraction.
Guzman and coworkers provided evidence that CD34+/CD38–/
CD123+cells can initiate a leukemic process when inoculated
into immunodeficient mice [46]. CD34+/CD38–/CD123+cells
were clearly detectable in ~75% of patients with AML [47] and
their number is predictive of clinical outcome [48]. In addition,
several membrane markers, including CD33, CLL1, TIM3,
CD244, CD47, CD96, CD157, and CD7, were ubiquitously
expressed on AML bulk cells at diagnosis and relapse, irrespective
of genetic features [49]. Haubner et al. explored the expression of
these membrane antigens in a large set of patients with AML at
diagnosis and at relapse. They found that CD33 and CD123 were
homogenously expressed at relapse and CD123 was expressed at
a higher level compared with CD33 in LSCs [50]. In addition, it
was hypothesized that CD123 overexpression through CXCR4
downregulation induces the egress of LSCs in AML from the
BM into the circulation [51,52].

Meanwhile, emerging studies have shown that CD123 is
highly expressed on the membrane of LSCs and is related to
the initiation and evolution of leukemia. In vivo studies con-
firmed that transplanted CD34+/CD123+ AML LSCs into nonob-
ese diabetic/severe combined immunodeficiency (NOD/SCID)
mice initiated leukemia, which suggested that CD123 is a specific
marker of LSCs. Using flow cytometry, CD123 expression was
likewise detected in LSCs of patients with AML but absent in nor-
mal HSCs [53].

Preclinical and clinical research into monoclonal antibodies
(mAbs) and IL-3-conjugated diphtheria toxin, Bi-specific T cell
engager (BiTE), CD3 � CD123 dual-affinity re-targeting (DART),
and anti-CD123 CAR-T therapies is undeway [54]. Another study
successfully developed anti-CD123 mAbs capable of specifically
binding to both the commercial and native antigens. The
CD123-targeting mAbs can selectively target the CD123 antigen
in patients with AML [55]. At present, there are three types of
immunotherapy-based CD123-targeting drug that have been
developed and evaluated in clinical trials: mAbs (such as
CSL362 and KHK2823), antibody-dependent cellular cytotoxic-
ity (ADCC) (e.g., SGN-CD123A and IMGN63) and antibody-
toxin conjugates (e.g., SL-401) [1]. Therefore, CD123 has great
potential as a target for clearance of LSCs.

Immune checkpoint molecules
Interesting checkpoint molecules have been detected on leuke-
mic cells, such as PD-L1, CTLA4, and TIM-3. They are defined
as ligand–receptor pairs with stimulatory or inhibitory effects
on immune responses. Combinations of PD-L1 or PD1 inhibitors
with hypomethylating agents are currently being tested in clini-
cal trials in patients with AML [56]. However, AML LSC responses
to these antibodies via the hypomethylation-induced upregula-
tion of PD-L1 in all patients are variable. Moreover, most
BRD4/MYC blockers, especially BRD4 degraders, also have strong
direct antineoplastic effects on AML LSCs by the same mecha-
nism [57]. TIM-3 and its ligand Galectin-9 have been shown to
be crucial for the survival of AML LSCs. Blocking of the
Galactin-9–TIM-3 interaction alone or in combination with
other targeted drugs is currently being explored in clinical trials
in AML [58]. CTLA-4 and CD28 are structurally related and both
bind to CD80 and CD86. CTLA4 blockade is useful in the post-
4 www.drugdiscoverytoday.com
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HSCT setting in AML, although it remains unknown whether
this immune checkpoint molecule also has a role in LSC resis-
tance in AML [1].

CD25
CD25, also known as the a chain of interleukin-2 receptor, is
strongly expressed on activated T cells and regulatory T cells
[59]. CD25 was reported as a potential target for LSC specific
therapy because it is highly expressed in LSCs but not in normal
HSCs. The safety of targeting CD25 was also demonstrated by the
long-term multilineage hematopoietic reconstitution capacity of
normal HSCs depleted of CD25+ cells [60]. Additionally, DR5-
specific TNF-related apoptosis-inducing ligand (TRAIL) peptide
can be used in CD25-targeted therapy of chemotherapy-
resistant LSCs [61].

Additionally, activated STAT5 is a major trigger of CD25
expression on various physiological and neoplastic cells, and
BCR-ABL is known to induce STAT5 activation. The STAT5-
targeting drug pimozide was found to decrease CD25 expression
on CD34+/CD38– CML LSCs [62]. A similar effect was obtained
with BCR-ABL-targeting drugs. In particular, nilotinib and pona-
tinib were found to suppress the expression of CD25 on CML
LSCs and KU812 cells [63]. By contrast, imatinib did not inhibit
the expression of CD25 on CML LSCs. This discrepancy is best
explained by intrinsic LSC resistance against imatinib, a phe-
nomenon that might be associated with poor uptake of imatinib
into LSCs or rapid efflux of the drug from LSCs after uptake [64].
In addition, STAT5 target genes are thought to have a role in
CML disease evolution. Under physiological conditions, CD25
is only expressed on a few hematopoietic cell types, including
activated T lymphocytes, activated B lymphocytes, and baso-
phils. A remarkable observation is that, in patients with CML,
abnormal expression of CD25 is restricted to LSCs [62]. In other
words, although BCR-ABL and activated STAT5 are expressed in
most clonal cells in patients with CML, the STAT5-dependent
target gene CD25 is only upregulated and expressed aberrantly
on LSCs. Thus, CD25 could be used as an immunotherapy target
using toxin conjugates. The elimination of preleukemic and LSCs
could be an advantage of CD25-targeting therapy. Another
approach would be to promote CD25 expression through inhibi-
tion of the PI3K-mTOR pathway [65].Therefore, LSCs can be
eliminated through related pathways or in combination with
CD25 inhibitors.

CD96
CD96 (also known as TACTILE) is a novel immune checkpoint
receptor target with a crucial role in antitumor immune
responses [66]. In addition, CD96 is presented on AML LSCs,
which makes it a potential LSC-specific therapeutic target. Hosen
et al. demonstrated that CD96 is expressed on most CD34+/
CD38– AML cells from diagnostic AML BM cells (74.0 ± 25.3%
in 19 of 29 cases), whereas only a few (4.9 ± 1.6%) cells in the
normal HSC-enriched population (Lin–CD34+CD38–CD90+)
weakly expressed CD96. Moreover, by separating AML cells into
CD96+ and CD96– fractions and transplanting them into irradi-
ated newborn Rag2–/– cc–/– mice, the authors found that CD96+

AML cells are enriched for LSC activity [67]. Collectively, these
results indicate that AML LSCs can be distinguished from normal
.org/10.1016/j.drudis.2021.05.009
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HSCs by the presence of CD96 expression. The engineering of
hematopoietic progenitor cell (HPC) grafts by means of a
CD96-specific antibody as well as its use in the clinic has the
potential to improve the tolerability and efficacy of therapy in
patients with AML [68].

In summary, CD96 is not expressed by the majority of cells in
normal HSC-enriched populations, but is frequently expressed in
AML LSC populations. Therefore, CD96 could be a specific target
for eliminating LSCs (Table 1).

c-MPL
The receptor of thrombopoietin (TPO), c-MPL, is involved in reg-
ulating megakaryocyte development as well as the self-renewal
and propagation of HSCs [69,70]. Yoshihara et al. identified c-
MPL as a specific marker for long-term HSCs that has a role in
the maintenance of HSC quiescence [71]. Chen et al. found that,
during active Rac1-mediated leukemia initiation and mainte-
nance, upregulation of c-MPL had an important role in the inter-
action of leukemia cells with the BM niche and contributed to
quiescence and chemotherapy resistance in leukemia cells. In
addition, analysis of c-MPL expression in primary human AML
samples revealed that the expression of c-MPL in patients with
AML, particularly CD34-positive AML, was significantly higher
than that in normal donors [72].

In a study using the AML1-ETO9a (AE9a) mouse leukemia
model that underwent chemotherapy, c-MPL+ cells within Lin–-
c-Kit+ leukemia cells were significantly enriched [73]. In addition,
flow cytometry was used to detect the proportion of c-MPL-
positive cells in BM samples from 29 patients with AML and
seven controls. The results showed that the median percentage
of c-MPL-positive cells in BM of patients with AML was 7.15 %,
higher than that in control subjects (2.73%). In addition, the
results showed that c-MPL is expressed in LSCs. It is speculated
that, in the BM microenvironment of leukemia, TPO/c-MPL
mediates the microenvironment, especially osteoblasts, to main-
tain the self-renewal and resting state of LSCs, thereby affecting
their stemness [74]. Thus, targeting c-MPL could help eliminate
LSCs.

Targeting related pathways
Canonical circadian pathway
Antileukemic effects are produced by targeting the Bmal1 gene to
destroy the canonical circadian pathway, causing impaired pro-
liferation, enhanced myeloid differentiation, and LSC depletion
[75]. In the hematopoietic system, the circadian clock regulates
HSC egress from the BM microenvironment [76], hematopoietic
engraftment [77], and BM mitotic activity [78]. Bmal1 is the core
component of an autoregulatory loop that drives robust oscilla-
tions in gene expression to regulate circadian physiology
[74,79]. Bmal1 and its heterodimeric partner Clock are function-
ally required for LSCs. This biological clock circuit has a role in
both healthy HSCs and cancerous AML HSCs. Interestingly,
however, disrupting this clock circuit effect impaired the activity
of AML stem cells while leaving healthy HSCs relatively
unharmed [80]. The researchers used a knockout model in which
Bmal1 was deleted only in blood cells. They found that, although
AML stem cells required Bmal1 to grow, normal HSCs were able
to survive even when Bmal1 was not expressed [81]. Meanwhile,
Please cite this article in press as: X.-Y. Ma et al., Drug Discovery Today (2021), https://doi
the presence of additional circadian regulators in leukemia cells
raises the possibility that both positive and negative elements
of the circadian transcriptional-translational feedback loop
impact LSC function [80]. Thus, disrupting the circadian path-
way by targeting of Bmal1 might be an important way to treat
leukemia.

Trans-chromatin regulatory pathway
Recent studies have found that only a subset of mutations con-
tained in AML blasts were present in HSC-enriched cell fractions
isolated from samples from patients with AML, and these cells
were capable of nonleukemic differentiation [82]. Shlush et al.
reported that the prehematopoietic stem cells of ancestral leuke-
mia can regenerate the entire hematopoietic system and, at the
same time, have a competitive multiplication advantage com-
pared with nonleukemia HSCs, leading to clonal expansion
[83]. These preleukemic HSCs are found in a high proportion
of patients with AML who carry mutations in DNA methyltrans-
ferase 3A (DNMT3A) and isocitrate dehydrogenase 2 (IDH2), and
unlike AML blasts, they survive induction chemotherapy and
persist in the BM at remission, providing a potential reservoir
for leukemic progression [83]. This finding is consistent with
two mouse studies conducted by Challen et al. and Tadokoro
et al., showing that HSCs lacking DNMT3A have a competitive
growth advantage [82,84], and with a report by Kim et al. predict-
ing that human DNMT3A mutations result in loss of function
[85]. Some patients might have a reservoir from which relapse
arises. If future phylogenetic single-cell lineage analysis estab-
lishes this possibility, then preleukemic HSCs should be directly
targeted to prevent relapse. As new drugs are developed that
effectively target mutations in DNMT3A or other genes that give
rise to preleukemic HSCs (e.g., AG-221, an IDH2 inhibitor), there
might be an opportunity to eradicate preleukemic HSC clones
before the acquisition of additional mutations renders them
more resistant to therapy. Duan et al.’s findings also support
broadening the definition of minimal residual disease to include
the posttherapy survival of not only AML blasts and LSCs, but
also preleukemic HSCs [86]. In addition, Daniel et al. reported
that the development of leukemia caused by DNMT3A mutation
might be regulated by the trans-chromatin regulatory pathway
[86]. Therefore, it might be possible to target DNMT3A BiTE via
the trans-chromatin regulatory pathway.

PTEN-C/EPBa-CTNNA1 molecular pathway
The evolutionarily highly conserved PTEN-C/EPBa-CTNNA1 sig-
nal pathway controls the development of HSCs and the malig-
nant transformation of LSCs [87]. There is some evidence that
CTNNA1 is a potential tumor suppressor gene in LSCs. One of
its alleles is inactivated by the deletion of genome fragments,
whereas the other is affected by epigenetic mechanisms (DNA
methylation and histone deacetylation) inhibition. Given the
limited therapeutic effects of DNA methylase inhibitors and his-
tone deacetylase inhibitors, further searches for the epigenetic
mechanism of CTNNA1 inactivation and upstream signal regula-
tion pathways will be necessary to reopen the genes in LSCs [88].
Fu et al. found that the PTEN-mTOR signal transduction pathway
acts on the upstream region of the PTEN-C/EPBa-CTNNA1 axis;
the authors also determined the ratio of wild-type p42C/EPBa
www.drugdiscoverytoday.com 5
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to dominant negative p30C/EPBa at the translation level [87].
The low ratio of p42/p30 causes p30C/EPBa to bind preferen-
tially to the proximal promoter of CTNNA1, and to recruit
PRC2 protein complexes containing EZH2, EED, and SUZ12 to
mediate the trimethylation of histone H3 at the 27th lysine resi-
due (H3K27me3) and transcription inhibition [89]. By contrast, a
high ratio of p42/p30 causes p42C/EPBa to bind to the proximal
promoter element of CTNNA1, and activates CTNNA1 transcrip-
tion by promoting H3K4 trimethylation (H3K4me3) modifica-
tion. In addition, in the BM of PTEN-knockout mice and PTEN-
knockout zebrafish embryos, the protein levels of wild-type C/
EPBa and a-catenin were significantly downregulated [87]. More
importantly, some studies found that ~20% of patients with
myeloid leukemia have low expression of CTNNA1 in LSCs
and, within this LSC subpopulation, only PTEN or CEBPA frame-
shift mutations have been detected. These important leukemia
suppressor genes regulate epigenetic mechanisms through a
highly evolved signal transduction axis to control the develop-
ment of HSCs and the malignant transformation of LSCs [90].
The discovery of the tumor suppressor axis of LSCs also provides
important clues for targeted therapy of leukemia, especially for
patients with low CTNNA1 expression [89]. Thus, in summary,
it might be possible to improve the inhibitory effect of LSCs
via the PTEN-C/EPBa-CTNNA1 signaling pathway.
The PI3K/AKT/mTOR signaling pathway
The inhibition of the PI3K/AKT/mTOR pathway has been
reported to have beneficial therapeutic effects in leukemia. This
pathway involves many cellular functions, including protein
synthesis, cell cycle progression, cell survival, apoptosis, angio-
genesis, and drug resistance [91]. Related studies have shown
that drugs targeting key molecules, such as PI3K, AKT, or mTOR,
have a beneficial role in killing LSCs. The PI3K/mTOR inhibitor
NVPBEZ235 can enhance the sensitivity of CML LSCs and pro-
genitor cells to nilotinib and enhance their cytotoxicity in
BCR/ABL mutant cells resistant to TKIs [92]. In some patients
with CML, PTEN protein deletion and subsequent AKT activa-
tion are accompanied by a side population (SP) phenotype rather
than by ATP-binding cassette subfamily G member 2 (ABCG2)
expression during accelerated/blast crisis (AP/BP). These results
suggest that PTEN regulates the expression of ABCG2 and SP
via the PI3K/AKT pathway, which provides a new strategy for
the targeted therapy of LSCs [93]. In addition, cyclin-
dependent kinases (CDKs) are crucial regulators of cell cycle
progression. Research has shown that CDK6 is involved in the
activation of LSCs [94]. At the same time, LSCs are more depen-
dent on CDK6 than are normal stem cells, and CDK6 might be
related to the PI3K pathway [94]. In summary, the development
of LSCs might be inhibited by targeting the PI3K/AKT/mTOR
signaling pathway.
JAK2-STAT3 pathway
The JAK/STAT3 pathway can lead to aberrant cell survival [95]. In
addition, some studies have shown that, after blocking YTHDF1
and 2, the expression of JAK2 and suppressor of cytokine
signaling 3 protein (SOCS3) changes, leading to inhibition of
the JAK2-STAT3 pathway [96].
6 www.drugdiscoverytoday.com
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The mRNA N6-methyladenosine (m6A) modification reader
YTHDF2 is highly expressed in a range of human AMLs. YTHDF2
reduces the half-life of various m6A transcripts, which contribute
to the overall integrity of LSC function, including tumor necrosis
factor receptor Tnfrsf2, which is upregulated in Ythdf2-deficient
LSCs and initiates apoptosis. Interestingly, YTHDF2 is not neces-
sary for normal HSC function, and lack of YTHDF2 increases the
activity of HSCs [97]. Ng et al. found that the expression of
YTHDF2 in AML samples with different cytogenetic abnormali-
ties was significantly higher than that in nonleukemia control
groups, and YTHDF2 protein was highly expressed in primary
AML samples. They also found that the expression of YTHDF2
was related to LSC activity [96]. Wu et al. found that inhibition
of YTHDF2 specifically impaired the development and reproduc-
tion of LSCs, and proved that targeting Ythdf2 protein can
enlarge HSCs and enhance their myeloid remodeling [97]. These
are the unique characteristics of YTHDF2, coupled with the per-
missible loss of YTHDF2 in adult mice, which highlights the ther-
apeutic potential of inhibiting YTHDF2 as a therapeutic strategy
for AML. This intervention has the dual advantages of eradicat-
ing malignant HSCs and giving normal HSCs a competitive
advantage. Given that the isolation of a sufficient number of
HSCs is a limiting factor for the use of HSC transplantation in
a variety of diseases, this challenge can be avoided by inhibiting
the expansion of HSCs by YTHDF2 in vitro or in vivo. To reveal
why the loss of YTHDF2 is associated with weak leukemic poten-
tial, Paris et al. found that transcripts negatively associated with
YTHDF2 expression were highly associated with the loss of leuke-
mic potential [98]. In this way, when AML samples express a
small amount of YTHDF2, transcripts associated with loss of leu-
kemia potential are more expressed. By contrast, transcripts
related to YTHDF2 expression are depleted from transcripts asso-
ciated with weak LSC activity. Therefore, YTHDF2 negatively reg-
ulates its expression and restricts the transcription of LSC activity
[99]. In conclusion, inhibition of YTHDF2 might have a key role
in the treatment of leukemia.

Wnt/JAK2 signaling pathway
Adenosine deaminase acting on RNA1 (ADAR1) might partici-
pate in the proliferation of AML cells by regulating the Wnt or
JAK2 signaling pathways [100]. In addition, in a humanized BC
CML mouse model, combined JAK2 and BCR-ABL1 inhibition
prevented LSC self-renewal commensurate with ADAR1 down-
regulation. Lentiviral ADAR1 wild-type, but not an editing-
defective ADAR1E912A mutant, induced self-renewal gene
expression and impaired the biogenesis of stem cell regulatory
let-7 miRNAs. Combined RNA sequencing, qRT-PCR, CLIPA-
DAR1, and pri-let-7 mutagenesis data suggest that ADAR1 pro-
motes LSC generation via let-7 pri-miRNA editing and LIN28B
upregulation [100]. A small-molecule tool compound antago-
nizes the effect of ADAR1 on LSC self-renewal in stromal co-
cultures and restores let-7 biogenesis. Thus, ADAR1 activation
represents a unique therapeutic vulnerability in LSCs with active
JAK2 signaling. In addition, the highly activated ADAR1 editing
system edited the let-7 miRNA. Ultimately, this activity increased
the ability for cell regeneration or self-renewal, transforming
leukocyte precursors into LSCs. LSCs promote the production
of an aggressive drug-resistant CML during the acute
.org/10.1016/j.drudis.2021.05.009
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transformation phase. This was the first mechanistic association
between proinflammatory signals and RNA editing-driven repro-
gramming of precursor cells into LSCs. After understanding how
the ADAR1 editing system works, the Jamieson team looked for a
way to stop it. By using small-molecule compounds to inhibit
sensitivity to inflammatory signals or to inhibit ADAR1, the
researchers were able to counteract the effects of ADAR1 on the
self-renewal of LSCs and, thus, restore the let-7 effect [101].
When a small molecule called 8-Aza was used to treat acute trans-
formation CML stem cells, the self-renewal capacity of these cells
decreased by ~40% compared with untreated CML stem cells
[99,100]. Thus, ADAR1 could be used as an effective target for
the clearance of LSCs.
PO
ST

-

Targeting the microenvironment of LSCs
CXCL12
C-X-C motif chemokine ligand 12 (CXCL12)-expressing cells
include MSCs, endothelial cells, osteoprogenitors, and osteo-
blasts [102]. There is a key role for niche-specific effects of
CXCL12 expression in maintaining the quiescence of TKI-
resistant LSC populations of CML, given that CXCL12 is
expressed in BM and controls the maintenance of HSCs. In a
mouse experiment, Bhatia and colleagues [103] found that the
removal of CXCL12 from MSCs, rather than CXCL12 from the
other three types of BM microenvironment cell (CXCL12-
abundant reticular cells, endothelial cells, and osteoblasts), pro-
moted the development of leukemia and reduced the survival
rate of mice. These results were related to the increase in cell
cycle activity and expansion of CML LSCs. However, circulating
LSCs become sensitive to TKI therapy, resulting in an increase in
their elimination. BM imaging studies showed that the recombi-
nant stromal cells colocated with LSCs in the discrete area of BM.
When CXCL12 was deleted, the colocalized regions of these
MSCs and LSCs disappeared, which further supported the impor-
tance of CXCL12 expression in maintaining the LSC niche.
These results suggest that MSCs expressing CXCL12 have a role
as specific regulatory regions in maintaining resting, treatment-
resistant LSCs in BM. Compared with MSCs, the loss of CXCL12
expression of endothelial cells in the BM microenvironment led
to a decrease in the number of CML LSCs and prolonged the sur-
vival rate of mice. This suggests that endothelial cells expressing
CXCL12 contribute to the maintenance of LSCs. Therefore, the
cellular regions with MSCs and endothelial cells expressing
CXCL12 have different regulatory effects on LSCs. Given the
diverse functions of different CXCL12-expressing cells, targeting
of specific LSC interactions with CXCL12-expressing mesenchy-
mal progenitor niches, or downstream effectors of these interac-
tions, might be preferable [104]. In summary, CXCL12 regulates
leukemic the microenvironment and, thus, has potential as a tar-
get for clearance of LSCs.
Please cite this article in press as: X.-Y. Ma et al., Drug Discovery Today (2021), https://doi
Niche
A study found that acute lymphoblastic leukemia LSCs construct
a new BM microenvironment (niche) and build a ‘temporary
shelter’ to escape chemotherapy [105]. Relapse easily occurs
because chemotherapy is unable to fully remove LSCs from the
BM. Therefore, understanding what exactly occurs in the BM fol-
lowing the start of chemotherapy is vital for the development of
new strategies for leukemia treatment. Mendez-Ferrer et al. found
that, after chemotherapy, LSCs secrete some cytokines, ‘recruit’
and transform BM MSCs, and establish a ‘temporary shelter’ to
escape the chemotherapy [105]. They also found that this ‘tem-
porary shelter’ initially comprised Nestin-positive MSCs, and
later became a-SMA positive. Therefore, this newly built refuge
was called the NSM microenvironment (NSM niche). Interfering
with the formation or protective function of the NSM niche can
significantly improve the effect of chemotherapy and remove the
remaining LSCs in the BM. On this basis, the presence of the
NSM niche has been detected in samples from patients with leu-
kemia whose disease cannot be relieved or is only partially
relieved by chemotherapy; they are not detected in the samples
of patients with leukemia in complete remission, thus confirm-
ing the above research results from the disease model [106].
The researchers suggested that, clinically, the existence of the
NSM niche can be detected to determine the prognosis of
patients [106]. Given that the effect of chemotherapy can be
improved by interfering with the formation and function of
the NSM niche, the latter might be a suitable drug target for elim-
inating LSCs.

Concluding remarks and perspective
From targeting of the survival microenvironment of LSCs, to sur-
face markers and related pathway controlling LSCs, targeted
treatment of LSCs has produced several research hotspots with
potential future development. Targeted treatment of LSCs can
fundamentally reduce the recurrence rate and improve both sur-
vival and cure rates for patients. Targeted treatment of LSCs can
also reduce the adverse effects of drugs while improving drug effi-
cacy and patient compliance. Thus, we could achieve the tar-
geted treatment of leukemia by preparing mAbs against specific
surface antigens, toxin conjugates, small-molecule drugs and
inhibitors targeting LSCs.
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